Krauss Daniel, Engel Lukas, Ott Tabea, Braunig Johanna, Richer Robert, Gambietz Markus, Albrecht Nils, Hille Eva M, Ullmann Ingrid, Braun Matthias, Dabrock Peter, Kolpin Alexander, Koelewijn Anne D, Eskofier Bjoern M, Vossiek Martin
Machine Learning and Data Analytics LabFriedrich-Alexander-Universität Erlangen-Nürnberg 91054 Erlangen Germany.
Institute of Microwaves and PhotonicsFriedrich-Alexander-Universität Erlangen-Nürnberg 91054 Erlangen Germany.
IEEE Open J Eng Med Biol. 2024 May 6;5:680-699. doi: 10.1109/OJEMB.2024.3397208. eCollection 2024.
Radio detection and ranging-based (radar) sensing offers unique opportunities for biomedical monitoring and can help overcome the limitations of currently established solutions. Due to its contactless and unobtrusive measurement principle, it can facilitate the longitudinal recording of human physiology and can help to bridge the gap from laboratory to real-world assessments. However, radar sensors typically yield complex and multidimensional data that are hard to interpret without domain expertise. Machine learning (ML) algorithms can be trained to extract meaningful information from radar data for medical experts, enhancing not only diagnostic capabilities but also contributing to advancements in disease prevention and treatment. However, until now, the two aspects of radar-based data acquisition and ML-based data processing have mostly been addressed individually and not as part of a holistic and end-to-end data analysis pipeline. For this reason, we present a tutorial on radar-based ML applications for biomedical monitoring that equally emphasizes both dimensions. We highlight the fundamentals of radar and ML theory, data acquisition and representation and outline categories of clinical relevance. Since the contactless and unobtrusive nature of radar-based sensing also raises novel ethical concerns regarding biomedical monitoring, we additionally present a discussion that carefully addresses the ethical aspects of this novel technology, particularly regarding data privacy, ownership, and potential biases in ML algorithms.
基于无线电探测与测距(雷达)的传感技术为生物医学监测提供了独特机遇,有助于克服现有解决方案的局限性。因其非接触式和非侵入式的测量原理,它能够促进对人体生理状况的长期记录,并有助于弥合从实验室到实际评估之间的差距。然而,雷达传感器通常会产生复杂的多维数据,若无专业领域知识则难以解读。机器学习(ML)算法可经训练从雷达数据中为医学专家提取有意义的信息,这不仅能增强诊断能力,还能推动疾病预防和治疗的进展。然而,到目前为止,基于雷达的数据采集和基于ML的数据处理这两个方面大多是分别进行探讨的,而非作为一个整体的端到端数据分析流程的一部分。因此,我们提供了一个关于基于雷达的ML应用于生物医学监测的教程,该教程对这两个方面同样重视。我们强调雷达和ML理论的基础、数据采集与表示,并概述具有临床相关性的类别。鉴于基于雷达的传感技术的非接触式和非侵入式特性也引发了有关生物医学监测的新伦理问题,我们还展开了一场讨论,审慎地探讨了这项新技术的伦理方面,特别是关于数据隐私、所有权以及ML算法中潜在的偏差。