Beijing Sport University, Beijing, China.
Beijing Research Institute of Sports Science, Beijing, China.
Front Public Health. 2024 Aug 13;12:1409198. doi: 10.3389/fpubh.2024.1409198. eCollection 2024.
The study aimed to compare the differences in the performance of seven session-rating of perceived exertion (RPE)-derived metrics (coupled and uncoupled acute: chronic workload ratio (ACWR), weekly ratio of workload change, monotony, standard deviation of weekly workload change, exponentially weighted moving average (EWMA), and robust exponential decreasing index (REDI)) in classifying the performance of an injury prediction model after taking into account the time series (no latency, 5-day latency, and 10-day latency).
The study documented the RPE of eight curlers in their daily training routine for 211 days prior to the Olympic Games.
Seven Session-RPE (sRPE)-derived metrics were used to build models at three time series nodes using logistic regression and multilayer perceptron. Receiver operating characteristic plots were plotted to evaluate the model's performance.
Among the seven sRPE-derived metrics multilayer perceptron models, the model without time delay (same-day load corresponding to same-day injury) exhibited the highest average classification performance (86.5%, AUC = 0.773). EMWA and REDI demonstrated the best classification performance (84.4%, < 0.001). Notably, EMWA achieved the highest classifying accuracy in the no-delay time series (90.0%, AUC = 0.899), followed by the weekly load change rate under the 5-day delay time series (88.9%, AUC = 0.841).
EWMA without delay is a more sensitive indicator for detecting injury risk.
本研究旨在比较七种基于单次评分的感觉用力(RPE)衍生指标(急性:慢性工作负荷比(ACWR)的耦合和非耦合、每周工作负荷变化比、单调性、每周工作负荷变化标准差、指数加权移动平均(EWMA)和稳健指数递减指数(REDI))在考虑时间序列(无潜伏期、5 天潜伏期和 10 天潜伏期)后,对损伤预测模型性能进行分类的差异。
本研究记录了 8 名冰壶运动员在奥运会前 211 天的日常训练中 RPE 的日常数据。
使用逻辑回归和多层感知器,在三个时间序列节点上使用七种基于单次 RPE(sRPE)衍生指标构建模型。绘制受试者工作特征图以评估模型的性能。
在七种基于 sRPE 衍生的指标多层感知器模型中,无延迟(当天负荷对应当天损伤)的模型表现出最高的平均分类性能(86.5%,AUC=0.773)。EWMA 和 REDI 表现出最佳的分类性能(84.4%,<0.001)。值得注意的是,EWMA 在无延迟时间序列中的分类准确率最高(90.0%,AUC=0.899),其次是在 5 天延迟时间序列下的每周负荷变化率(88.9%,AUC=0.841)。
无延迟的 EWMA 是检测损伤风险的更敏感指标。