National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Nano. 2024 Sep 10;18(36):25193-25204. doi: 10.1021/acsnano.4c07379. Epub 2024 Aug 28.
Opto-electrophysiology neural probes targeting single-cell levels offer an important avenue for elucidating the intrinsic mechanisms of the nervous system using different physical quantities, representing a significant future direction for brain-computer interface (BCI) devices. However, the highly integrated structure poses significant challenges to fabrication processes and the presence of photoelectric artifacts complicates the extraction and analysis of target signals. Here, we propose a highly miniaturized and integrated opto-electrophysiology neural probe for electrical recording and optical stimulation at the single-cell/subcellular level. The design of a total internal reflection layer addresses the photoelectric artifacts that are more pronounced in single-cell devices compared to conventional implantable BCI devices. Finite element simulations and electrical signal tests demonstrate that the opto-electrophysiology neural probe eliminates the photoelectric artifacts in the time domain, which represents a significant breakthrough for optoelectrical integrated BCI devices. Our proposed opto-electrophysiology neural probe holds substantial potential for promoting the development of BCI devices and developing advanced therapeutic strategies for neurological disorders.
针对单细胞水平的光电生理学神经探针为利用不同物理量阐明神经系统的内在机制提供了重要途径,代表了脑机接口(BCI)设备的一个重要未来发展方向。然而,高度集成的结构对制造工艺提出了重大挑战,并且光电伪影的存在使得目标信号的提取和分析变得复杂。在这里,我们提出了一种高度微型化和集成的光电生理学神经探针,用于单细胞/亚细胞水平的电记录和光刺激。全内反射层的设计解决了与传统可植入 BCI 设备相比,在单细胞设备中更为明显的光电伪影问题。有限元模拟和电信号测试表明,光电生理学神经探针消除了时域中的光电伪影,这是光电集成 BCI 设备的一个重大突破。我们提出的光电生理学神经探针为推动 BCI 设备的发展和开发神经疾病的先进治疗策略提供了巨大潜力。