Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
J Ind Microbiol Biotechnol. 2018 Jul;45(7):599-614. doi: 10.1007/s10295-018-2027-3. Epub 2018 Mar 19.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
合成生物学家利用工程学原理设计和构建基因回路,为细胞编程赋予新的功能。通常采用自下而上的方法来设计和构建基因回路,通过拼接能够重新编程细胞新行为的功能模块来实现。虽然基因回路通过严格调控基因表达来控制细胞的运作,但细胞外空间中的各种环境因素也对细胞行为有重大影响。细胞外空间为合成生物学家提供了另一种途径,可以使用生物材料在细胞外空间中设计和构建对细胞响应的模块,将他们的工程原理应用其中。在这篇综述中,我们讨论了如何使用 DNA 模块采用自下而上的方法来构建基因回路,并将其应用于生物材料,从而控制细胞在细胞外环境中的行为。我们认为,通过在合成生物学和生物材料中共同控制内在和外在信号,可以改善组织工程的结果。