Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France.
Photon Science Division, Paul Scherrer Institute, Villigen, PSI 5232, Switzerland.
IUCrJ. 2024 Sep 1;11(Pt 5):708-722. doi: 10.1107/S2052252524007838.
Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.
生物材料具有优异的性能。通过将材料从毫米到纳米尺度在三维空间中进行广泛的层次结构构建,轻松实现具有挑战性的机械、光学或电学性能。实现这些性能的关键策略是通过将材料从毫米到纳米尺度在三维空间中进行广泛的层次结构构建。尽管生物材料中的层次结构早已为人所知,但对这种结构的 3D 特征描述仍然是一个挑战。为了了解材料的行为,需要采用多模态和多尺度的特征描述方法。在这篇综述中,我们以骨骼和贝壳的结构为例,概述了当前使用的 X 射线分析方法。我们展示了最近的进展如何帮助我们理解层次结构及其功能,以及如何利用这些结构为未来的研究方向提供帮助。我们还讨论了当前的障碍,包括辐射损伤、数据量和样品制备,以及解决这些问题的策略。