Suppr超能文献

微流道的阻抗特性及集成共面平行电极作为芯片上器官微系统全通道分析的设计参数。

Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems.

机构信息

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel.

Department of Physiology and Cell Biology, Faculty of Health Sciences, Regenerative Medicine and Stem Cell (RMSC) Research Center, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 42, Rm 326, Beer Sheva 8410501, Israel.

出版信息

Biosensors (Basel). 2024 Aug 1;14(8):374. doi: 10.3390/bios14080374.

Abstract

Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing.

摘要

微流控技术通过实现精确的物理和化学环境控制,彻底改变了细胞培养。与电极结合使用,微流控细胞培养可以实时激活或感知其变化。我们使用之前开发的可靠且稳定的用于细胞生长和监测的微流控设备,设计、制造和表征了一种基于整个通道阻抗的传感器,并使用它系统地评估微流控通道边界与变化的电极尺寸、距离、涂层和细胞覆盖的电和电化学影响。我们的研究包括理论和实验方法,以研究设计参数和绝缘边界条件如何改变阻抗特性。我们使用频率范围为 0.5 Hz 至 1 MHz 和调制电压为 50 mV 的各种溶液对系统进行了检查。结果表明,阻抗与电极距离成正比,与电极涂层、面积和通道尺寸成反比。我们还证明电极间距是影响阻抗的主要因素。最后,我们总结了所有发现的关系,并评论了使用该系统研究血管模型和器官芯片设备中屏障细胞的适宜性。这项基础研究有助于在需要通道几何形状和基于阻抗的生物传感的微流控培养构建体和模型的精心设计中提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0ae/11352977/5f0d16cb3b71/biosensors-14-00374-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验