Suppr超能文献

基于 FPGA 的实时漫散射相关光谱学的片上系统解决方案。

A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.

机构信息

Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Biosensors (Basel). 2024 Aug 8;14(8):384. doi: 10.3390/bios14080384.

Abstract

Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.

摘要

漫射相关光谱学(DCS)是一种用于评估深层组织血液灌注的非侵入性技术。然而,它需要大量的计算资源来进行数据分析,这在实时应用中实施时带来了挑战。为了解决这一未满足的需求,我们开发了一种新型的片上器件解决方案,它完全集成了 DCS 所需的所有必要计算组件。它接收光子探测器的输出,并确定血流指数(BFI)。它在现场可编程门阵列(FPGA)芯片上实现,包括用于计算时间强度光自相关函数的多τ相关器和 DCS 分析仪,以 6000 BFI/s 的速率执行曲线拟合操作,得出 BFI。该 FPGA DCS 系统在用于体模和袖带缺血研究的实验室标准 DCS 系统上进行了评估。结果表明,FPGA DCS 和参考 DCS 的光相关和 BFI 的自相关吻合得很好。此外,FPGA DCS 系统能够实现 50 Hz 的测量率并解析脉动血流。这可以显著降低 DCS 的计算组件的成本和占用空间,为便携式、实时 DCS 系统铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c7/11352433/b8bd199fc64a/biosensors-14-00384-g001.jpg

相似文献

1
A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.
Biosensors (Basel). 2024 Aug 8;14(8):384. doi: 10.3390/bios14080384.
2
Diffuse Correlation Spectroscopy Analysis Implemented on a Field Programmable Gate Array.
IEEE Access. 2019;7:122503-122512. doi: 10.1109/access.2019.2938085. Epub 2019 Aug 28.
3
FPGA Correlator for Applications in Embedded Smart Devices.
Biosensors (Basel). 2022 Apr 12;12(4):236. doi: 10.3390/bios12040236.
4
Field programmable gate array compression for large array multispeckle diffuse correlation spectroscopy.
J Biomed Opt. 2023 May;28(5):057001. doi: 10.1117/1.JBO.28.5.057001. Epub 2023 May 8.
5
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
7
Time-domain diffuse correlation spectroscopy.
Optica. 2016 Sep;3(9):1006-1013. doi: 10.1364/OPTICA.3.001006. Epub 2016 Sep 6.
8
Fast blood flow monitoring in deep tissues with real-time software correlators.
Biomed Opt Express. 2016 Feb 3;7(3):776-97. doi: 10.1364/BOE.7.000776. eCollection 2016 Mar 1.
10
Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture.
Biomed Opt Express. 2021 Jun 15;12(7):4131-4146. doi: 10.1364/BOE.423777. eCollection 2021 Jul 1.

本文引用的文献

1
Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
J Biomed Opt. 2024 Jan;29(1):015004. doi: 10.1117/1.JBO.29.1.015004. Epub 2024 Jan 27.
2
Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy.
Biomed Opt Express. 2023 Sep 21;14(10):5358-5375. doi: 10.1364/BOE.498693. eCollection 2023 Oct 1.
3
Normative cerebral microvascular blood flow waveform morphology assessed with diffuse correlation spectroscopy.
Biomed Opt Express. 2023 Jun 23;14(7):3635-3653. doi: 10.1364/BOE.489760. eCollection 2023 Jul 1.
6
Field programmable gate array compression for large array multispeckle diffuse correlation spectroscopy.
J Biomed Opt. 2023 May;28(5):057001. doi: 10.1117/1.JBO.28.5.057001. Epub 2023 May 8.
7
Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera.
Biomed Opt Express. 2023 Jan 9;14(2):703-713. doi: 10.1364/BOE.473992. eCollection 2023 Feb 1.
9
Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy.
Comput Methods Programs Biomed. 2022 Jul;222:106933. doi: 10.1016/j.cmpb.2022.106933. Epub 2022 Jun 3.
10
FPGA Correlator for Applications in Embedded Smart Devices.
Biosensors (Basel). 2022 Apr 12;12(4):236. doi: 10.3390/bios12040236.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验