Suppr超能文献

基于深度学习的扩散相关光谱法中浅层和深层血流速率分离

Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy.

作者信息

Nakabayashi Mikie, Liu Siwei, Broti Nawara Mahmood, Ichinose Masashi, Ono Yumie

机构信息

Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan.

Human Integrative Physiology Laboratory, School of Business Administration, Meiji University,1-1 Surugadai, Kanda, Chiyoda-ku, Tokyo,1018301, Japan.

出版信息

Biomed Opt Express. 2023 Sep 21;14(10):5358-5375. doi: 10.1364/BOE.498693. eCollection 2023 Oct 1.

Abstract

Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise.

摘要

扩散相关光谱技术在皮肤和深部组织血流污染方面面临挑战。我们提出了一种长短期记忆网络,以直接量化浅层和深层组织的血流速度。通过利用浅层和深层血流速度对自相关函数的不同贡献,我们在双层血流模型实验中准确预测了浅层和深层血流速度(均方根误差分别为0.047和0.034毫升/分钟/100克模拟组织,相关系数分别为0.99和0.99)。这种方法在评估活跃肌肉的血流反应方面很有用,在这种情况下,皮肤和深部肌肉的血流都会随着运动而增加。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验