Baar Stefan, Kuragano Masahiro, Nishishita Naoki, Tokuraku Kiyotaka, Watanabe Shinya
Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan.
Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe 650-0047, Japan.
J Imaging. 2024 Jul 29;10(8):181. doi: 10.3390/jimaging10080181.
When analyzing microscopic time-lapse observations, frame alignment is an essential task to visually understand the morphological and translation dynamics of cells and tissue. While in traditional single-sample microscopy, the region of interest (RoI) is fixed, multi-sample microscopy often uses a single microscope that scans multiple samples over a long period of time by laterally relocating the sample stage. Hence, the relocation of the optics induces a statistical RoI offset and can introduce jitter as well as drift, which results in a misaligned RoI for each sample's time-lapse observation (stage drift). We introduce a robust approach to automatically align all frames within a time-lapse observation and compensate for frame drift. In this study, we present a sub-pixel precise alignment approach based on recurrent all-pairs field transforms (RAFT); a deep network architecture for optical flow. We show that the RAFT model pre-trained on the Sintel dataset performed with near perfect precision for registration tasks on a set of ten contextually unrelated time-lapse observations containing 250 frames each. Our approach is robust for elastically undistorted and translation displaced (x,y) microscopic time-lapse observations and was tested on multiple samples with varying cell density, obtained using different devices. The approach only performed well for registration and not for tracking of the individual image components like cells and contaminants. We provide an open-source command-line application that corrects for stage drift and jitter.
在分析微观延时观测数据时,帧对齐是直观理解细胞和组织形态及迁移动力学的一项基本任务。在传统的单样本显微镜观察中,感兴趣区域(RoI)是固定的,而在多样本显微镜观察中,通常使用一台显微镜,通过横向移动样本载物台在较长时间内扫描多个样本。因此,光学器件的移动会导致RoI出现统计偏移,并可能引入抖动和漂移,从而使每个样本的延时观测出现RoI未对齐的情况(载物台漂移)。我们引入了一种稳健的方法来自动对齐延时观测中的所有帧,并补偿帧漂移。在本研究中,我们提出了一种基于循环全对场变换(RAFT)的亚像素精确对齐方法;RAFT是一种用于光流的深度网络架构。我们表明,在Sintel数据集上预训练的RAFT模型,在一组十个上下文无关的延时观测(每个包含250帧)上进行配准任务时,表现出近乎完美的精度。我们的方法对于弹性未失真和平移位移(x,y)的微观延时观测具有鲁棒性,并在使用不同设备获得的、细胞密度不同的多个样本上进行了测试。该方法仅在配准方面表现良好,而在跟踪细胞和污染物等单个图像成分方面表现不佳。我们提供了一个开源的命令行应用程序,用于校正载物台漂移和抖动。