Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA.
Bioinformatics. 2013 Feb 1;29(3):373-80. doi: 10.1093/bioinformatics/bts706. Epub 2012 Dec 14.
Optical flow is a key method used for quantitative motion estimation of biological structures in light microscopy. It has also been used as a key module in segmentation and tracking systems and is considered a mature technology in the field of computer vision. However, most of the research focused on 2D natural images, which are small in size and rich in edges and texture information. In contrast, 3D time-lapse recordings of biological specimens comprise up to several terabytes of image data and often exhibit complex object dynamics as well as blurring due to the point-spread-function of the microscope. Thus, new approaches to optical flow are required to improve performance for such data.
We solve optical flow in large 3D time-lapse microscopy datasets by defining a Markov random field (MRF) over super-voxels in the foreground and applying motion smoothness constraints between super-voxels instead of voxel-wise. This model is tailored to the specific characteristics of light microscopy datasets: super-voxels help registration in textureless areas, the MRF over super-voxels efficiently propagates motion information between neighboring cells and the background subtraction and super-voxels reduce the dimensionality of the problem by an order of magnitude. We validate our approach on large 3D time-lapse datasets of Drosophila and zebrafish development by analyzing cell motion patterns. We show that our approach is, on average, 10 × faster than commonly used optical flow implementations in the Insight Tool-Kit (ITK) and reduces the average flow end point error by 50% in regions with complex dynamic processes, such as cell divisions.
Source code freely available in the Software section at http://janelia.org/lab/keller-lab.
光流是定量估计明场显微镜下生物结构运动的一种关键方法。它也被用作分割和跟踪系统的关键模块,并且被认为是计算机视觉领域的一项成熟技术。然而,大多数研究都集中在二维自然图像上,这些图像尺寸较小,具有丰富的边缘和纹理信息。相比之下,生物样本的三维延时记录包含多达几个 TB 的图像数据,并且由于显微镜的点扩散函数,通常表现出复杂的物体动态和模糊。因此,需要新的光流方法来提高此类数据的性能。
我们通过在前景中超像素上定义马尔可夫随机场 (MRF),并在超像素之间应用运动平滑约束而不是体素-wise 来解决大的三维延时显微镜数据集的光流问题。该模型针对明场显微镜数据集的特定特征进行了定制:超像素有助于在无纹理区域进行配准,MRF 超像素在相邻细胞和背景减法之间有效地传播运动信息,并且超像素将问题的维度降低了一个数量级。我们通过分析果蝇和斑马鱼发育的大 3D 延时数据集来验证我们的方法,以分析细胞运动模式。我们表明,与 Insight Tool-Kit (ITK) 中常用的光流实现相比,我们的方法平均快 10 倍,并且在具有复杂动态过程(例如细胞分裂)的区域中,平均流端点误差降低了 50%。
可在 http://janelia.org/lab/keller-lab 上的软件部分免费获得源代码。