Suppr超能文献

使用卷积神经网络的乳糜泻深度学习图像分类

Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks.

作者信息

Carreras Joaquim

机构信息

Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan.

出版信息

J Imaging. 2024 Aug 16;10(8):200. doi: 10.3390/jimaging10080200.

Abstract

Celiac disease (CD) is a gluten-sensitive immune-mediated enteropathy. This proof-of-concept study used a convolutional neural network (CNN) to classify hematoxylin and eosin (H&E) CD histological images, normal small intestine control, and non-specified duodenal inflammation (7294, 11,642, and 5966 images, respectively). The trained network classified CD with high performance (accuracy 99.7%, precision 99.6%, recall 99.3%, F1-score 99.5%, and specificity 99.8%). Interestingly, when the same network (already trained for the 3 class images), analyzed duodenal adenocarcinoma (3723 images), the new images were classified as duodenal inflammation in 63.65%, small intestine control in 34.73%, and CD in 1.61% of the cases; and when the network was retrained using the 4 histological subtypes, the performance was above 99% for CD and 97% for adenocarcinoma. Finally, the model added 13,043 images of Crohn's disease to include other inflammatory bowel diseases; a comparison between different CNN architectures was performed, and the gradient-weighted class activation mapping (Grad-CAM) technique was used to understand why the deep learning network made its classification decisions. In conclusion, the CNN-based deep neural system classified 5 diagnoses with high performance. Narrow artificial intelligence (AI) is designed to perform tasks that typically require human intelligence, but it operates within limited constraints and is task-specific.

摘要

乳糜泻(CD)是一种对麸质敏感的免疫介导性肠病。这项概念验证研究使用卷积神经网络(CNN)对苏木精和伊红(H&E)染色的CD组织学图像、正常小肠对照以及未明确的十二指肠炎症(分别为7294、11642和5966张图像)进行分类。训练后的网络对CD的分类具有很高的性能(准确率99.7%,精确率99.6%,召回率99.3%,F1分数99.5%,特异性99.8%)。有趣的是,当同一个网络(已经针对这三类图像进行了训练)分析十二指肠腺癌(3723张图像)时,在63.65%的病例中,新图像被分类为十二指肠炎症,34.73%被分类为小肠对照,1.61%被分类为CD;当使用这四种组织学亚型对网络进行重新训练时,CD的性能高于99%,腺癌的性能高于97%。最后,该模型添加了13043张克罗恩病图像以纳入其他炎症性肠病;对不同的CNN架构进行了比较,并使用梯度加权类激活映射(Grad-CAM)技术来理解深度学习网络做出分类决策的原因。总之,基于CNN的深度神经系统对5种诊断进行了高性能分类。狭义人工智能(AI)旨在执行通常需要人类智能的任务,但它在有限的约束条件下运行且具有任务特定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8468/11355344/0a15b74a4db3/jimaging-10-00200-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验