Suppr超能文献

应用视频胶囊内镜定量检测乳糜泻严重程度:人类专家与机器学习算法的比较。

Quantification of Celiac Disease Severity Using Video Capsule Endoscopy: A Comparison of Human Experts and Machine Learning Algorithms.

机构信息

Academic Unit of Gastroenterology and Hepatology, Sheffield Teaching Hospitals NHS Hospital Trust, Sheffield, S10 2JF, UK.

Invicro, a Konica Minolta Company, Boston, MA, USA.

出版信息

Curr Med Imaging. 2023;19(12):1455-1662. doi: 10.2174/1573405619666230123110957.

Abstract

BACKGROUND

Video capsule endoscopy (VCE) is an attractive method for diagnosing and objectively monitoring disease activity in celiac disease (CeD). Its use, facilitated by artificial intelligence- based tools, may allow computer-assisted interpretation of VCE studies, transforming a subjective test into a quantitative and reproducible measurement tool.

OBJECTIVE

To evaluate and compare objective CeD severity assessment as determined with VCE by expert human readers and a machine learning algorithm (MLA).

METHODS

Patients ≥ 18 years with histologically proven CeD underwent VCE. Examination frames were scored by three readers from one center and the MLA, using a 4-point ordinal scale for assessing the severity of CeD enteropathy. After scoring, curves representing CeD severity across the entire small intestine (SI) and individual tertiles (proximal, mid, and distal) were fitted for each reader and the MLA. All comparisons used Krippendorff's alpha; values > 0.8 represent excellent to 'almost perfect' inter-reader agreement.

RESULTS

VCEs from 63 patients were scored. Readers demonstrated strong inter-reader agreement on celiac villous damage (alpha=0.924), and mean value reader curves showed similarly excellent agreement with MLA curves (alpha=0.935). Average reader and MLA curves were comparable for mean and maximum values for the first SI tertile (alphas=0.932 and 0.867, respectively) and the mean value over the entire SI (alpha=0.945).

CONCLUSION

A novel MLA demonstrated excellent agreement on whole SI imaging with three expert gastroenterologists. An ordinal scale permitted high inter-reader agreement, accurately and reliably replicated by the MLA. Interpreting VCEs using MLAs may allow automated diagnosis and disease burden assessment in CeD.

摘要

背景

视频胶囊内镜(VCE)是一种有吸引力的方法,可用于诊断和客观监测乳糜泻(CeD)的疾病活动。借助基于人工智能的工具,其使用可能允许计算机辅助解释 VCE 研究,将主观测试转变为定量和可重复的测量工具。

目的

评估和比较 VCE 中由专家人工读者和机器学习算法(MLA)确定的客观 CeD 严重程度评估。

方法

≥18 岁的组织学证实的 CeD 患者接受 VCE 检查。使用 4 分序数量表评估 CeD 肠病的严重程度,由来自一个中心的三位读者和 MLA 对检查帧进行评分。评分后,为每个读者和 MLA 拟合代表整个小肠(SI)和各个三分位数(近端、中部和远端)的 CeD 严重程度曲线。所有比较均使用克里普多夫氏α;值>0.8 表示读者间具有极好到“几乎完美”的一致性。

结果

对 63 例 VCE 进行了评分。读者对乳糜泻绒毛损伤具有很强的读者间一致性(α=0.924),且均值读者曲线与 MLA 曲线具有相似的优异一致性(α=0.935)。对于第一 SI 三分位数的平均值和最大值(α值分别为 0.932 和 0.867)以及整个 SI 的平均值(α=0.945),平均读者和 MLA 曲线相似。

结论

一种新的 MLA 与三位专家胃肠病学家在整个 SI 成像方面具有极好的一致性。有序量表允许高读者间一致性,并且可以由 MLA 准确可靠地复制。使用 MLA 解释 VCE 可能允许在 CeD 中进行自动诊断和疾病负担评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe1/10364343/655684584389/CMIM-19-1455_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验