Suppr超能文献

动态因果模型突出了感觉运动皮层自我抑制降低在运动疲劳中的重要性。

Dynamic causal modelling highlights the importance of decreased self-inhibition of the sensorimotor cortex in motor fatigability.

作者信息

Heimhofer Caroline, Bächinger Marc, Lehner Rea, Frässle Stefan, Henk Balsters Joshua, Wenderoth Nicole

机构信息

Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland.

Neuroscience Center Zurich (ZNZ), University of Zurich, ETH Zurich, University and Balgrist Hospital Zurich, Zurich, Switzerland.

出版信息

Brain Struct Funct. 2024 Dec;229(9):2419-2429. doi: 10.1007/s00429-024-02840-1. Epub 2024 Aug 28.

Abstract

Motor fatigability emerges when challenging motor tasks must be maintained over an extended period of time. It is frequently observed in everyday life and affects patients as well as healthy individuals. Motor fatigability can be measured using simple tasks like finger tapping at maximum speed for 30 s. This typically results in a rapid decrease of tapping frequency, a phenomenon called motor slowing. In a previous study (Bächinger et al, eLife, 8 (September), https://doi.org/10.7554/eLife.46750 , 2019), we showed that motor slowing goes hand in hand with a gradual increase in blood oxygen level dependent signal in the primary sensorimotor cortex (SM1), supplementary motor area (SMA), and dorsal premotor cortex (PMd). It is unclear what drives the activity increase in SM1 caused by motor slowing and whether motor fatigability affects the dynamic interactions between SM1, SMA, and PMd. Here, we performed dynamic causal modelling (DCM) on data of 24 healthy young participants collected during functional magnetic resonance imaging to answer this question. The regions of interest (ROI) were defined based on the peak activation within SM1, SMA, and PMd. The model space consisted of bilateral connections between all ROI, with intrinsic self-modulation as inhibitory, and driving inputs set to premotor areas. Our findings revealed that motor slowing was associated with a significant reduction in SM1 self-inhibition, as uncovered by testing the maximum à posteriori against 0 (t(23)=-4.51, p < 0.001). Additionally, the model revealed a significant decrease in the driving input to premotor areas (t(23) > 2.71, p < 0.05) suggesting that structures other than cortical motor areas may contribute to motor fatigability.

摘要

当必须长时间维持具有挑战性的运动任务时,就会出现运动疲劳。在日常生活中经常可以观察到这种情况,它会影响患者以及健康个体。运动疲劳可以通过一些简单任务来测量,比如以最快速度进行30秒的手指敲击。这通常会导致敲击频率迅速下降,这种现象称为运动减慢。在之前的一项研究中(Bächinger等人,《eLife》,8(9月),https://doi.org/10.7554/eLife.46750 ,2019),我们表明运动减慢与初级感觉运动皮层(SM1)、辅助运动区(SMA)和背侧运动前皮层(PMd)中血氧水平依赖信号的逐渐增加同时出现。目前尚不清楚是什么驱动了由运动减慢引起的SM1活动增加,以及运动疲劳是否会影响SM1、SMA和PMd之间的动态相互作用。在这里,我们对24名健康年轻参与者在功能磁共振成像期间收集的数据进行了动态因果建模(DCM),以回答这个问题。感兴趣区域(ROI)是根据SM1、SMA和PMd内的峰值激活来定义的。模型空间包括所有ROI之间的双侧连接,内在自调制为抑制性,驱动输入设置为运动前区。我们的研究结果表明,运动减慢与SM1自抑制的显著降低有关,这是通过将最大后验值与0进行检验发现的(t(23)= -4.51,p < 0.001)。此外,该模型还显示运动前区的驱动输入显著减少(t(23) > 2.71,p < 0.05),这表明除了皮层运动区之外的其他结构可能与运动疲劳有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27e6/11611979/5fb1a763b8e5/429_2024_2840_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验