Department of Engineering and Applied Techniques, Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/ Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720, Murcia, Spain.
Department of Computer Science and Information Technologies, Universidade da Coruña, CITIC, 15071, A Coruña, Spain.
Environ Sci Pollut Res Int. 2024 Sep;31(42):54481-54501. doi: 10.1007/s11356-024-34714-8. Epub 2024 Aug 28.
LED spectrophotometry is a robust technique for the indirect characterization of wastewater pollutant load through correlation modeling. To tackle this issue, a dataset with 1300 samples was collected, from both raw and treated wastewater from 45 wastewater treatment plants in Spain and Chile collected over 4 years. The type of regressor, scaling, and dimensionality reduction technique and nature of the data play crucial roles in the performance of the processing pipeline. Eighty-four pipelines were tested through exhaustive experimentation resulting from the combination of 7 regression techniques, 3 scaling methods, and 4 possible dimensional reductions. Those combinations were tested on the prediction of chemical oxygen demand (COD) and total suspended solids (TSS). Each pipeline underwent a tenfold cross-validation on 15 sub-datasets derived from the original dataset, accounting for variations in plants and wastewater types. The results point to the normalization of the data followed by a conversion through the PCA to finally apply a Random Forest Regressor as the combination which stood out These results highlight the importance of modeling strategies in wastewater management using techniques such as LED spectrophotometry.
LED 分光光度法是通过相关建模间接描述废水污染物负荷的强大技术。为了解决这个问题,我们收集了一个包含 1300 个样本的数据集,这些样本来自西班牙和智利 45 个污水处理厂的原水和处理后的废水,采集时间跨度为 4 年。回归器的类型、缩放和降维技术以及数据的性质在处理管道的性能中起着至关重要的作用。通过对 7 种回归技术、3 种缩放方法和 4 种可能的降维方法的组合进行穷尽实验,测试了 84 个管道。这些组合用于预测化学需氧量(COD)和总悬浮固体(TSS)。每个管道在原始数据集的 15 个子数据集上进行了 10 倍交叉验证,以考虑工厂和废水类型的变化。结果表明,数据的归一化后,通过 PCA 进行转换,最后应用随机森林回归器作为突出的组合。这些结果强调了在废水管理中使用 LED 分光光度法等技术时建模策略的重要性。