Ballestero Matheus, de Souza Leandro Candido, Levada Alexandre Luis Magalhães, Pongeluppi Rodrigo Inácio, Funo Stephanie Naomi, Pineda Felipe Gutierrez, Colli Benedicto Oscar, de Oliveira Ricardo Santos
Medicine Department, Federal University of São Carlos, São Carlos, SP, Brazil.
Division of Neurosurgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Neurosurg Rev. 2025 Apr 7;48(1):355. doi: 10.1007/s10143-025-03506-0.
Traumatic brain injury (TBI) is a significant global health issue with high morbidity and mortality rates. Recent studies have shown that machine learning algorithms outperform traditional logistic regression models in predicting functional outcomes for TBI patients. This research aimed to compare the accuracy of the binomial logistic regression model with the Extreme Gradient Boosting (XGBoost) machine learning model. The study included 5056 adult TBI patients evaluated using the Glasgow Outcome Scale (GOS). The XGBoost model was trained on 80% of the sample and tested on the remaining 20%. The logistic regression model accurately predicted 59.7% of unfavorable outcomes, with a significant impact of variables like age and Glasgow Coma Scale (GCS). The ROC curve analysis showed an Area Under the Curve (AUC) of 0.942, indicating the model's predictive ability. The XGBoost algorithm achieved an accuracy of 0.89, AUC of 0.83. The most critical variables in the XGBoost model were days of hospitalization, age, systolic blood pressure, ICU length of stay, GCS and respiratory rate. The XGBoost algorithm performed better in accuracy for predicting unfavorable outcomes, while logistic regression was superior in terms of the ROC curve. Further studies are needed to fine-tune the algorithm's hyperparameters and develop models applicable in clinical settings. Clinical trial number Not applicable.
创伤性脑损伤(TBI)是一个重大的全球健康问题,发病率和死亡率都很高。最近的研究表明,在预测TBI患者的功能结局方面,机器学习算法优于传统的逻辑回归模型。本研究旨在比较二项逻辑回归模型与极端梯度提升(XGBoost)机器学习模型的准确性。该研究纳入了5056例使用格拉斯哥预后量表(GOS)评估的成年TBI患者。XGBoost模型在80%的样本上进行训练,并在其余20%的样本上进行测试。逻辑回归模型准确预测了59.7%的不良结局,年龄和格拉斯哥昏迷量表(GCS)等变量有显著影响。ROC曲线分析显示曲线下面积(AUC)为0.942,表明该模型具有预测能力。XGBoost算法的准确率为0.89,AUC为0.83。XGBoost模型中最关键的变量是住院天数、年龄、收缩压、ICU住院时间、GCS和呼吸频率。XGBoost算法在预测不良结局的准确性方面表现更好,而逻辑回归在ROC曲线方面更具优势。需要进一步研究来微调算法的超参数,并开发适用于临床环境的模型。临床试验编号:不适用。