Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
J Physiol. 2024 Sep;602(17):4309-4326. doi: 10.1113/JP286559. Epub 2024 Aug 28.
Epithelial Na channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (α mice). On a normal Na control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and α mice. Patch-clamp analyses revealed similar levels of ENaC activity in kidney tubules, while no physiologically relevant differences in blood chemistry or aldosterone levels were detected. Male α mice did exhibit diminished ENaC activity in the distal colon, as measured by amiloride-sensitive short-circuit current (I). Following dietary Na restriction, WT and α mice had similar natriuretic and colonic I responses to amiloride. However, single-channel activity was significantly lower in kidney tubules from Na-restricted α mice compared with WT littermates. ENaC α and γ subunit expression in kidney and distal colon were also enhanced in Na-restricted α vs. WT mice, in association with higher aldosterone levels. These data provide evidence that disrupting α subunit proteolysis impairs ENaC activity in vivo, requiring compensation in response to Na restriction. KEY POINTS: The epithelial Na channel (ENaC) is activated by proteolytic cleavage in vitro, but key questions regarding the role of ENaC proteolysis in terms of whole-animal physiology remain to be addressed. We studied the in vivo importance of this mechanism by generating a mouse model with a genetic disruption to a key cleavage site in the ENaC's α subunit (α mice). We found that α mice did not exhibit a physiologically relevant phenotype under normal dietary conditions, but have impaired ENaC activation (channel open probability) in the kidney during salt restriction. ENaC function at the organ level was preserved in salt-restricted α mice, but this was associated with higher aldosterone levels and increased expression of ENaC subunits, suggesting compensation was required to maintain homeostasis. These results provide the first evidence that ENaC α subunit proteolysis is a key regulator of channel activity in vivo.
上皮钠通道 (ENaC) 通过特定部位的 α 和 γ 亚基的蛋白水解作用激活,这些部位位于嵌入式抑制结构域的侧翼。为了研究 α 亚基蛋白水解在体内通道激活中的作用,我们生成了缺乏 α 亚基中远端弗林切割位点的小鼠(α 小鼠)。在正常的钠对照饮食中,在野生型 (WT) 和 α 小鼠之间,肾脏或远端结肠中的 ENaC 蛋白丰度没有差异。膜片钳分析显示,肾脏小管中 ENaC 的活性水平相似,而在血液化学或醛固酮水平方面没有检测到生理相关的差异。雄性 α 小鼠的远端结肠中 ENaC 的活性确实降低,这可以通过氨氯吡咪敏感的短路电流 (I) 来衡量。在限制钠饮食后,WT 和 α 小鼠对氨氯吡咪的排钠和结肠 I 反应相似。然而,与 WT 同窝仔相比,限制钠饮食的 α 小鼠的肾脏小管中的单通道活性明显较低。在限制钠饮食的 α 小鼠中,肾脏和远端结肠中的 ENaC α 和 γ 亚基的表达也增加,这与醛固酮水平升高有关。这些数据提供了证据,证明破坏 α 亚基蛋白水解会损害体内 ENaC 的活性,需要在对钠限制做出补偿。关键点:上皮钠通道 (ENaC) 在体外通过蛋白水解切割激活,但关于 ENaC 蛋白水解在整体动物生理学方面的作用的关键问题仍有待解决。我们通过生成一种在 ENaC 的 α 亚基中关键切割位点具有遗传缺陷的小鼠模型来研究这种机制在体内的重要性(α 小鼠)。我们发现,在正常饮食条件下,α 小鼠没有表现出生理相关的表型,但在盐限制期间,肾脏中的 ENaC 激活(通道开放概率)受损。在盐限制的 α 小鼠中,ENaC 的器官水平功能得到保留,但这与醛固酮水平升高和 ENaC 亚基表达增加有关,这表明需要补偿来维持体内平衡。这些结果首次提供了证据,证明 ENaC α 亚基蛋白水解是体内通道活性的关键调节剂。