Rani Garima, Sengupta Anupam
Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg.
Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg; Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, Grand Duchy of Luxembourg.
Biophys Rep (N Y). 2024 Dec 11;4(4):100175. doi: 10.1016/j.bpr.2024.100175. Epub 2024 Aug 26.
Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.
生长中的细菌菌落内个体的时空组织是种内相互作用和菌落尺度异质性的关键决定因素。因此,与谱系相关的不断演变的细胞分布对于我们理解跨尺度的细菌命运至关重要。然而,随着菌落扩大,细菌如何在谱系上进行自我组织仍是未知的。在这里,通过开发一种定制的无标记算法,我们追踪并研究了新兴的自相似谱系飞地的产生和演化,其动态受生物活性支配。飞地边界处的拓扑缺陷调整了活性界面的指状形态。细胞排列的香农熵随时间减少;分裂较快的细胞与其谱系亲属具有更高的空间亲和力,代价是处于熵有利的充分混合状态。我们的粗粒化晶格模型表明,谱系飞地的出现是由于分裂介导的扩散、分裂事件的随机性以及细胞间相互作用的相互作用。该研究报告了迄今为止由于熵抑制而产生的隐藏的新兴自组织特征,最终调节了细菌菌落内的种内谱系距离。