Suppr超能文献

同行评议文献中汇总水平流行病学数据的定量偏倚分析方法:一项系统评价

Quantitative bias analysis methods for summary-level epidemiologic data in the peer-reviewed literature: a systematic review.

作者信息

Shi Xiaoting, Liu Ziang, Zhang Mingfeng, Hua Wei, Li Jie, Lee Joo-Yeon, Dharmarajan Sai, Nyhan Kate, Naimi Ashley, Lash Timothy L, Jeffery Molly M, Ross Joseph S, Liew Zeyan, Wallach Joshua D

机构信息

Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.

Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.

出版信息

J Clin Epidemiol. 2024 Nov;175:111507. doi: 10.1016/j.jclinepi.2024.111507. Epub 2024 Aug 27.

Abstract

OBJECTIVES

Quantitative bias analysis (QBA) methods evaluate the impact of biases arising from systematic errors on observational study results. This systematic review aimed to summarize the range and characteristics of QBA methods for summary-level data published in the peer-reviewed literature.

STUDY DESIGN AND SETTING

We searched MEDLINE, Embase, Scopus, and Web of Science for English-language articles describing QBA methods. For each QBA method, we recorded key characteristics, including applicable study designs, bias(es) addressed; bias parameters, and publicly available software. The study protocol was preregistered on the Open Science Framework (https://osf.io/ue6vm/).

RESULTS

Our search identified 10,249 records, of which 53 were articles describing 57 QBA methods for summary-level data. Of the 57 QBA methods, 53 (93%) were explicitly designed for observational studies, and 4 (7%) for meta-analyses. There were 29 (51%) QBA methods that addressed unmeasured confounding, 19 (33%) misclassification bias, 6 (11%) selection bias, and 3 (5%) multiple biases. Thirty-eight (67%) QBA methods were designed to generate bias-adjusted effect estimates and 18 (32%) were designed to describe how bias could explain away observed findings. Twenty-two (39%) articles provided code or online tools to implement the QBA methods.

CONCLUSION

In this systematic review, we identified a total of 57 QBA methods for summary-level epidemiologic data published in the peer-reviewed literature. Future investigators can use this systematic review to identify different QBA methods for summary-level epidemiologic data.

摘要

目的

定量偏倚分析(QBA)方法评估系统误差产生的偏倚对观察性研究结果的影响。本系统评价旨在总结同行评审文献中发表的用于汇总水平数据的QBA方法的范围和特点。

研究设计与设置

我们在MEDLINE、Embase、Scopus和Web of Science中检索描述QBA方法的英文文章。对于每种QBA方法,我们记录了关键特征,包括适用的研究设计、解决的偏倚、偏倚参数和公开可用的软件。研究方案已在开放科学框架(https://osf.io/ue6vm/)上预先注册。

结果

我们的检索共识别出10249条记录,其中53篇文章描述了57种用于汇总水平数据的QBA方法。在这57种QBA方法中,53种(93%)是专门为观察性研究设计的,4种(7%)是为Meta分析设计的。有29种(51%)QBA方法解决了未测量的混杂因素,19种(33%)解决了错误分类偏倚,6种(11%)解决了选择偏倚,3种(5%)解决了多种偏倚。38种(67%)QBA方法旨在生成偏倚调整后的效应估计值,18种(32%)旨在描述偏倚如何解释观察到的结果。22篇(39%)文章提供了实施QBA方法的代码或在线工具。

结论

在本系统评价中,我们共识别出同行评审文献中发表的57种用于汇总水平流行病学数据的QBA方法。未来的研究者可以利用本系统评价来识别用于汇总水平流行病学数据的不同QBA方法。

相似文献

本文引用的文献

1
Real-World Evidence - Where Are We Now?真实世界证据——我们目前处于什么阶段?
N Engl J Med. 2022 May 5;386(18):1680-1682. doi: 10.1056/NEJMp2200089. Epub 2022 Apr 30.
2
The Importance of Making Assumptions in Bias Analysis.在偏差分析中进行假设的重要性。
Epidemiology. 2021 Sep 1;32(5):617-624. doi: 10.1097/EDE.0000000000001381.
3
Multiple-bias Sensitivity Analysis Using Bounds.基于界的多重偏差敏感性分析。
Epidemiology. 2021 Sep 1;32(5):625-634. doi: 10.1097/EDE.0000000000001380.
9
Sensitivity Analysis in Observational Research: Introducing the E-Value.观察性研究中的敏感性分析:引入 E 值。
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.
10
Quantitative Bias Analysis in Regulatory Settings.监管环境中的定量偏差分析。
Am J Public Health. 2016 Jul;106(7):1227-30. doi: 10.2105/AJPH.2016.303199. Epub 2016 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验