Suppr超能文献

后组学时代的精准代谢建模:成就与展望

Precise metabolic modeling in post-omics era: accomplishments and perspectives.

作者信息

Kong Yawen, Chen Haiqin, Huang Xinlei, Chang Lulu, Yang Bo, Chen Wei

机构信息

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.

School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.

出版信息

Crit Rev Biotechnol. 2025 May;45(3):683-701. doi: 10.1080/07388551.2024.2390089. Epub 2024 Aug 28.

Abstract

Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.

摘要

微生物因其在合成所需生物产品方面的可持续性和可扩展性而被广泛利用。然而,对细胞内代谢的了解不足阻碍了微生物的进一步应用。基因组规模代谢模型(GEMs)在促进对细胞代谢机制的全面理解方面发挥着关键作用。这些模型通过探索代谢途径和预测微生物中的潜在靶点来实现合理修饰,从而在无需实验成本的情况下实现精确的细胞调控。尽管如此,简化的GEM仅考虑基因组信息和网络化学计量,而忽略了其他重要的生物信息,如酶功能、热力学性质和动力学参数。因此,在预测复杂多变系统中的微生物行为时,不确定性仍然存在。组学时代的到来,能够在各种条件下对基因、蛋白质和代谢物进行大规模定量,这促使了具有更高预测能力和更广泛维度的多约束模型和更新算法的蓬勃发展。与此同时,机器学习(ML)在应用于生物大数据训练集时展现出了卓越的分析和预测能力。将ML的判别力与GEM相结合,可提高机理建模效率并提升预测准确性。本文概述了GEM的研究创新,包括多约束建模、分析方法以及ML的最新应用,这些可能为广泛生物分子的基因优化、菌株开发和产量提高提供全面的知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验