Suppr超能文献

使用基质辅助激光解吸电离质谱联用机器学习进行疫苗真伪筛查。

Using matrix assisted laser desorption ionisation mass spectrometry combined with machine learning for vaccine authenticity screening.

作者信息

Clarke Rebecca, Bharucha Tehmina, Arman Benediktus Yohan, Gangadharan Bevin, Gomez Fernandez Laura, Mosca Sara, Lin Qianqi, Van Assche Kerlijn, Stokes Robert, Dunachie Susanna, Deats Michael, Merchant Hamid A, Caillet Céline, Walsby-Tickle John, Probert Fay, Matousek Pavel, Newton Paul N, Zitzmann Nicole, McCullagh James S O

机构信息

Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.

Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.

出版信息

NPJ Vaccines. 2024 Aug 28;9(1):155. doi: 10.1038/s41541-024-00946-5.

Abstract

The global population is increasingly reliant on vaccines to maintain population health with billions of doses used annually in immunisation programmes. Substandard and falsified vaccines are becoming more prevalent, caused by both the degradation of authentic vaccines but also deliberately falsified vaccine products. These threaten public health, and the increase in vaccine falsification is now a major concern. There is currently no coordinated global infrastructure or screening methods to monitor vaccine supply chains. In this study, we developed and validated a matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) workflow that used open-source machine learning and statistical analysis to distinguish authentic and falsified vaccines. We validated the method on two different MALDI-MS instruments used worldwide for clinical applications. Our results show that multivariate data modelling and diagnostic mass spectra can be used to distinguish authentic and falsified vaccines providing proof-of-concept that MALDI-MS can be used as a screening tool to monitor vaccine supply chains.

摘要

全球人口越来越依赖疫苗来维持群体健康,免疫计划每年使用数十亿剂疫苗。不合格和伪造的疫苗正变得越来越普遍,这是由正品疫苗的降解以及故意伪造的疫苗产品造成的。这些威胁着公众健康,疫苗伪造现象的增加现在已成为一个主要问题。目前没有协调一致的全球基础设施或筛查方法来监测疫苗供应链。在本研究中,我们开发并验证了一种基质辅助激光解吸/电离质谱(MALDI-MS)工作流程,该流程使用开源机器学习和统计分析来区分正品和伪造疫苗。我们在全球范围内用于临床应用的两种不同的MALDI-MS仪器上验证了该方法。我们的结果表明,多变量数据建模和诊断质谱可用于区分正品和伪造疫苗,从而提供了MALDI-MS可作为监测疫苗供应链的筛查工具的概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/860b/11358428/fff8a5212c42/41541_2024_946_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验