Suppr超能文献

基于广泛的多效性假设对人类长寿的多基因预测。

Polygenic prediction of human longevity on the supposition of pervasive pleiotropy.

机构信息

Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.

Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.

出版信息

Sci Rep. 2024 Aug 28;14(1):19981. doi: 10.1038/s41598-024-69069-0.

Abstract

The highly polygenic nature of human longevity renders pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between aging-related traits (ARTs), we aimed to model the additive variance in lifespan as a function of the cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts (the Scripps Wellderly cohort and the Medical Genome Reference Bank (MRGB)) and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at a higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.

摘要

人类长寿的高度多基因性质使得多效性成为其遗传结构不可或缺的特征。利用与衰老相关特征(ARTs)的遗传相关性,我们旨在将寿命的加性方差建模为多效性分离变体累积负担的函数。我们追踪了等位基因频率随年龄的变化与不同年龄组的存活率之间的关系,并优先考虑了 34 种变体,这些变体通过英国生物银行中的 PheWAS 分析揭示了对脂质代谢、体重指数(BMI)和认知表现等特征的直接影响。考虑到长寿的遗传决定因素之间高度复杂和非线性的相互作用,我们推断复合多基因评分将近似于寿命方差的很大一部分,并开发了综合长寿遗传评分(iLGSs)来区分卓越的生存。我们表明,我们的综合模型得出的系数可能揭示了与寿命特异性多效性相关的有趣基因组模式。我们评估了我们的模型在区分两个复制队列(斯克里普斯老年队列和医学基因组参考库(MRGB))中长寿个体中卓越长寿的富集的预测性能,并表明我们复合预测指数中最高十分位数的中位寿命最长可达 4.8 年。最后,使用 iLGS 的蛋白质组学相关性,我们确定了与卓越长寿相关的蛋白质标志物,而与实际年龄无关,并优先考虑了具有重新利用潜力的药物,用于 gerotherapeutics。总的来说,我们的方法为通过 ARTs 定义卓越长寿的加性责任的多基因建模提供了一个有前途的框架,并有助于识别那些具有更高死亡率风险的个体,以便更早地进行有针对性的生活方式改变。此外,与 iLGS 相关的蛋白质组学特征突出了 PI3K-Akt 上游的功能途径,该途径可以有效地靶向以减缓衰老并延长寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f966/11358495/6f2bf0e12a22/41598_2024_69069_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验