Kant Ravi, Maurya S P, Singh K H, Nisar Kottakkaran Sooppy, Tiwari Anoop Kumar
Department of Geophysics, Banaras Hindu University, Varanasi, 221005, India.
Department of Earth Sciences, IIT Bombay, Mumbai, 400076, India.
Sci Rep. 2024 Sep 29;14(1):22581. doi: 10.1038/s41598-024-72278-2.
Accurate reservoir characterization is necessary to effectively monitor, manage, and increase production. A seismic inversion methodology using a genetic algorithm (GA) and particle swarm optimization (PSO) technique is proposed in this study to characterize the reservoir both qualitatively and quantitatively. It is usually difficult and expensive to map deeper reservoirs in exploratory operations when using conventional approaches for reservoir characterization hence inversion based on advanced technique (GA and PSO) is proposed in this study. The main goal is to use GA and PSO to significantly lower the fitness (error) function between real seismic data and modeled synthetic data, which will allow us to estimate subsurface properties and accurately characterize the reservoir. Both techniques estimate subsurface properties in a comparable manner. Consequently, a qualitative and quantitative comparison is conducted between these two algorithms. Using two synthetic data and one real data from the Blackfoot field in Canada, the study examined subsurface acoustic impedance and porosity in the inter-well zone. Porosity and acoustic impedance are layer features, but seismic data is an interface property, hence these characteristics provide more useful and applicable reservoir information. The inverted results aid in the understanding of seismic data by providing incredibly high-resolution images of the subsurface. Both the GA and the PSO algorithms deliver outstanding results for both simulated and real data. The inverted section accurately delineated a high porosity zone ( ) that supported the high seismic amplitude anomaly by having a low acoustic impedance (6000-8500 m/s g/cc). This unusual zone is categorized as a reservoir (sand channel) and is located in the 1040-1065 ms time range. In this inversion process, after 400 iterations, the fitness error falls from 1 to 0.88 using GA optimization, compared to 1 to 0.25 using PSO. The convergence time for GA is 670,680 s, but the convergence time for PSO optimization is 356,400 s, showing that the former requires more time than the latter.
准确的储层表征对于有效监测、管理和提高产量至关重要。本研究提出了一种使用遗传算法(GA)和粒子群优化(PSO)技术的地震反演方法,以对储层进行定性和定量表征。在勘探作业中,当使用传统方法进行储层表征时,绘制深层储层通常既困难又昂贵,因此本研究提出基于先进技术(GA和PSO)的反演方法。主要目标是使用GA和PSO显著降低真实地震数据与模拟合成数据之间的适应度(误差)函数,这将使我们能够估计地下特性并准确地表征储层。两种技术以可比的方式估计地下特性。因此,对这两种算法进行了定性和定量比较。利用来自加拿大黑脚油田的两个合成数据和一个真实数据,该研究考察了井间区域的地下声阻抗和孔隙度。孔隙度和声阻抗是层特征,但地震数据是界面属性,因此这些特征提供了更有用和适用的储层信息。反演结果通过提供地下令人难以置信的高分辨率图像,有助于理解地震数据。GA和PSO算法对模拟数据和真实数据都给出了出色的结果。反演剖面准确地勾勒出一个高孔隙度区( ),该区域通过具有低声阻抗(6000 - 8500 m/s g/cc)来支持高地震振幅异常。这个异常区域被归类为储层(砂质通道),位于1040 - 1065 ms时间范围内。在这个反演过程中,经过400次迭代后,使用GA优化时适应度误差从1降至0.88,而使用PSO时从1降至0.25。GA的收敛时间为670,680 s,但PSO优化的收敛时间为356,400 s,表明前者比后者需要更多时间。