Suppr超能文献

使用双内核和元启发式算法改进的相关向量机预测岩石爆破过程中的地面振动。

Predicting ground vibration during rock blasting using relevance vector machine improved with dual kernels and metaheuristic algorithms.

作者信息

Fissha Yewuhalashet, Khatti Jitendra, Ikeda Hajime, Grover Kamaldeep Singh, Owada Narihiro, Toriya Hisatoshi, Adachi Tsuyoshi, Kawamura Youhei

机构信息

Department of Geosciences, Geotechnology, and Materials Engineering for Resources, Graduate School of International Resource Sciences, Akita University, Akita, 010-8502, Japan.

Department of Mining Engineering, Aksum University, 7080, Aksum, Tigray, Ethiopia.

出版信息

Sci Rep. 2024 Aug 28;14(1):20026. doi: 10.1038/s41598-024-70939-w.

Abstract

The ground vibration caused by rock blasting is an extremely hazardous outcome of the blasting operation. Blasting activity has detrimental effects on both the ecology and the human population living in proximity to the area. Evaluating the magnitude of blasting vibrations requires careful evaluation of the peak particle velocity (PPV) as a fundamental and essential parameter for quantifying vibration velocity. Therefore, this study employs models using the relevance vector machine (RVM) approach for predicting the PPV resulting from quarry blasting. This investigation utilized the conventional and optimized RVM models for the first time in ground vibration prediction. This work compares thirty-three RVM models to choose the most efficient performance model. The following conclusions have been mapped from the outcomes of the several analyses. The performance evaluation of each RVM model demonstrates each model achieved a performance of more than 0.85 during the testing phase, there was a strong correlation observed between the actual ground vibrations and the predicted ones. The analysis of performance metrics (RMSE = 21.2999 mm/s, 16.2272 mm/s, R = 0.9175, PI = 1.59, IOA = 0.8239, IOS = 0.2541), score analysis (= 93), REC curve (= 6.85E-03, close to the actual, i.e., 0), curve fitting (= 1.05 close to best fit, i.e., 1), AD test (= 11.607 close to the actual, i.e., 9.790), Wilcoxon test (= 95%), Uncertainty analysis (WCB = 0.0134), and computational cost (= 0.0180) demonstrate that PSO_DRVM model MD29 outperformed better than other RVM models in the testing phase. This study will help mining and civil engineers and blasting experts to select the best kernel function and its hyperparameters in estimating ground vibration during rock blasting project. In the context of the mining and civil industry, the application of this study offers significant potential for enhancing safety protocols and optimizing operational efficiency.

摘要

岩石爆破引起的地面振动是爆破作业极其危险的后果。爆破活动对生态环境以及居住在该区域附近的人口都有不利影响。评估爆破振动的强度需要仔细评估峰值颗粒速度(PPV),将其作为量化振动速度的一个基本且重要的参数。因此,本研究采用基于相关向量机(RVM)方法的模型来预测采石场爆破产生的PPV。本研究首次在地面振动预测中使用传统和优化的RVM模型。这项工作比较了33个RVM模型,以选择性能最有效的模型。从多次分析的结果得出了以下结论。每个RVM模型的性能评估表明,在测试阶段每个模型的性能都超过了0.85,实际地面振动与预测振动之间存在很强的相关性。性能指标分析(RMSE = 21.2999mm/s,16.2272mm/s,R = 0.9175,PI = 1.59,IOA = 0.8239,IOS = 0.2541)、得分分析(= 93)、REC曲线(= 6.85E - 03,接近实际值,即0)、曲线拟合(= 1.05,接近最佳拟合值,即1)、AD测试(= 11.607,接近实际值,即9.790)、威尔科克森测试(= 95%)、不确定性分析(WCB = 0.0134)和计算成本(= 0.0180)表明,PSO_DRVM模型MD29在测试阶段的表现优于其他RVM模型。本研究将帮助采矿和土木工程师以及爆破专家在岩石爆破项目中估计地面振动时选择最佳核函数及其超参数。在采矿和土木行业背景下,本研究的应用在加强安全规程和优化运营效率方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d55/11358398/e960ddf64b91/41598_2024_70939_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验