Suppr超能文献

基于模型的深度学习方法用于聚焦超声路径扫描。

Model based deep learning method for focused ultrasound pathway scanning.

机构信息

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

出版信息

Sci Rep. 2024 Aug 29;14(1):20042. doi: 10.1038/s41598-024-70689-9.

Abstract

The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.

摘要

高强度聚焦超声(HIFU)是一种非侵入性的医学治疗方法,其主要目的是通过从外部电源聚焦高频超声来精确靶向和消融肿瘤。为了治疗大体积的肿瘤,必须进行一系列的消融,因为单次消融只能去除少量组织。为了在最大限度地提高治疗效果的同时,将皮肤烧伤等不良反应降至最低,术前治疗计划对于确定每次消融的焦点部位和超声持续时间至关重要。在这里,我们介绍了一种基于机器学习的 HIFU 治疗计划设计方法,该方法利用了患者特有的材料特性图谱和精确的热模拟。采用数值模型来求解 HIFU 过程的控制方程,并模拟 HIFU 吸收机制,包括随之而来的传热过程和超声期间的温升。为了验证这个数值模型的准确性,我们使用离体牛肝进行了一系列的测试。研究结果表明,开发的模型能够很好地表示肿瘤几何形状的显著差异,并根据成像数据生成定义明确的闭合治疗区域。所提出的策略促进了高质量治疗计划的制定,组织过度或欠治疗的平均比率小于 0.06%。通过与实验数据的定量比较,验证了数值模型在准确预测 HIFU 加热过程方面的有效性,当与机器学习技术结合使用时。所提出的方法与 HIFU 模拟相结合,有可能增强术前 HIFU 计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcfd/11358149/a057fe71415d/41598_2024_70689_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验