文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于解剖学真实乳房模型的磁性热疗消融治疗乳房肿瘤的数值研究。

Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom.

机构信息

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

PLoS One. 2022 Sep 21;17(9):e0274801. doi: 10.1371/journal.pone.0274801. eCollection 2022.


DOI:10.1371/journal.pone.0274801
PMID:36129953
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9491569/
Abstract

Magnetic fluid hyperthermia (MFH) is a novel reliable technique with excellent potential for thermal therapies and treating breast tumours. This method involves injecting a magnetic nanofluid into the tumour and applying an external AC magnetic field to induce heat in the magnetic nanoparticles (MNPs) and raise the tumour temperature to ablation temperature ranges. Because of the complexity of considering and coupling all different physics involves in this phenomenon and also due to the intricacy of a thorough FEM numerical study, few FEM-based studies address the entire MFH process as similar to reality as possible. The current study investigates a FEM-based three-dimensional numerical simulation of MFH of breast tumours as a multi-physics problem. An anatomically realistic breast phantom (ARBP) is considered, some magnetic nanofluid is injected inside the tumour, and the diffusion phenomenon is simulated. Then, the amount of heat generated in the MNP-saturated tumour area due to an external AC magnetic field is simulated. In the end, the fraction of tumour tissue necrotized by this temperature rise is evaluated. The study's results demonstrate that by injecting nanofluid and utilizing seven circular copper windings with each coil carrying 400 A current with a frequency of 400 kHz for generating the external AC magnetic field, the temperature in tumour tissue can be raised to a maximum of about 51.4°C, which leads to necrosis of entire tumour tissue after 30 minutes of electromagnetic field (EMF) exposure. This numerical platform can depict all four various physics involved in the MFH of breast tumours by numerically solving all different equation sets coupled together with high precision. Thus, the proposed model can be utilized by clinicians as a reliable tool for predicting and identifying the approximate amount of temperature rise and the necrotic fraction of breast tumour, which can be very useful to opt for the best MFH therapeutic procedure and conditions based on various patients. In future works, this numerical platform's results should be compared with experimental in-vivo results to improve and modify this platform in order to be ready for clinical applications.

摘要

磁流体热疗(MFH)是一种新颖可靠的技术,具有出色的热疗和治疗乳腺癌的潜力。该方法涉及将磁性纳米流体注入肿瘤,并施加外部交流磁场以在磁性纳米颗粒(MNPs)中产生热量,从而将肿瘤温度升高到消融温度范围。由于考虑和耦合所有不同物理现象的复杂性,以及彻底的有限元数值研究的复杂性,很少有基于有限元的研究尽可能真实地模拟整个 MFH 过程。本研究针对乳腺癌的基于有限元的三维数值模拟作为一个多物理问题进行了研究。考虑了一个解剖学上逼真的乳房模型(ARBP),在肿瘤内注入一些磁性纳米流体,并模拟了扩散现象。然后,模拟由于外部交流磁场而在 MNP 饱和肿瘤区域产生的热量。最后,评估由于温度升高而导致的肿瘤组织坏死的分数。研究结果表明,通过注入纳米流体并利用七个带有每个线圈 400A 电流的圆形铜绕组,以 400kHz 的频率产生外部交流磁场,可以将肿瘤组织的温度升高到约 51.4°C 的最大值,这导致在电磁场(EMF)暴露 30 分钟后整个肿瘤组织坏死。这个数值平台可以通过数值求解高精度耦合在一起的所有不同方程组来描绘乳腺癌 MFH 中涉及的所有四个不同物理现象。因此,所提出的模型可以被临床医生用作预测和识别乳腺癌温度升高和坏死分数的可靠工具,这对于根据各种患者选择最佳的 MFH 治疗程序和条件非常有用。在未来的工作中,应该将这个数值平台的结果与体内实验结果进行比较,以改进和修改这个平台,以便为临床应用做好准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/e35df2da431e/pone.0274801.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/fea86ae5fc4d/pone.0274801.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c37309fa84b0/pone.0274801.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c04deff7b78c/pone.0274801.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/a0135324d38b/pone.0274801.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/92efdeabf5eb/pone.0274801.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c9432f4fc034/pone.0274801.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/3a300b76457e/pone.0274801.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/f993ae4e86ba/pone.0274801.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/f43445e5392a/pone.0274801.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/632686d61640/pone.0274801.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/adac41754624/pone.0274801.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/dbcef4309ea0/pone.0274801.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/641165772665/pone.0274801.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/0706841b6e27/pone.0274801.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/6d18945804b7/pone.0274801.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/e471fc29ae5e/pone.0274801.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/d1b360078a8a/pone.0274801.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/e35df2da431e/pone.0274801.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/fea86ae5fc4d/pone.0274801.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c37309fa84b0/pone.0274801.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c04deff7b78c/pone.0274801.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/a0135324d38b/pone.0274801.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/92efdeabf5eb/pone.0274801.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/c9432f4fc034/pone.0274801.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/3a300b76457e/pone.0274801.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/f993ae4e86ba/pone.0274801.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/f43445e5392a/pone.0274801.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/632686d61640/pone.0274801.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/adac41754624/pone.0274801.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/dbcef4309ea0/pone.0274801.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/641165772665/pone.0274801.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/0706841b6e27/pone.0274801.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/6d18945804b7/pone.0274801.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/e471fc29ae5e/pone.0274801.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/d1b360078a8a/pone.0274801.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8a/9491569/e35df2da431e/pone.0274801.g018.jpg

相似文献

[1]
Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom.

PLoS One. 2022

[2]
Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning.

Int J Mol Sci. 2019-9-19

[3]
3D in silico study of magnetic fluid hyperthermia of breast tumor using FeO magnetic nanoparticles.

J Therm Biol. 2020-7

[4]
Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model.

IEEE Trans Biomed Eng. 2013-1-23

[5]
Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.

Int J Hyperthermia. 1997

[6]
A comprehensive numerical procedure for high-intensity focused ultrasound ablation of breast tumour on an anatomically realistic breast phantom.

PLoS One. 2024

[7]
The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.

Int J Hyperthermia. 2011

[8]
In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.

Comput Methods Programs Biomed. 2022-8

[9]
Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.

IEEE Trans Nanobioscience. 2011-12

[10]
Numerical simulation of the effect of necrosis area in systemic delivery of magnetic nanoparticles in hyperthermia cancer treatment.

J Therm Biol. 2020-12

引用本文的文献

[1]
A comprehensive modeling on thermal damage in tumor hyperthermia therapies using magneto-plasmonic nanocomposite.

Sci Rep. 2025-7-15

[2]
3D Computational Modeling of FeO@Au Nanoparticles in Hyperthermia Treatment of Skin Cancer.

Nanotechnol Sci Appl. 2025-4-12

[3]
A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation.

Foods. 2024-9-26

[4]
A comprehensive numerical procedure for high-intensity focused ultrasound ablation of breast tumour on an anatomically realistic breast phantom.

PLoS One. 2024

[5]
Model based deep learning method for focused ultrasound pathway scanning.

Sci Rep. 2024-8-29

[6]
Tumor-targeting cell membrane-coated nanorings for magnetic-hyperthermia-induced tumor ablation.

Biomater Sci. 2023-10-24

[7]
A 3D Approach Using a Control Algorithm to Minimize the Effects on the Healthy Tissue in the Hyperthermia for Cancer Treatment.

Entropy (Basel). 2023-4-19

[8]
Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects.

Cancers (Basel). 2023-3-20

[9]
Numerical Estimation of SAR and Temperature Distributions inside Differently Shaped Female Breast Tumors during Radio-Frequency Ablation.

Materials (Basel). 2022-12-26

本文引用的文献

[1]
Parametric Investigations of Magnetic Nanoparticles Hyperthermia in Ferrofluid using Finite Element Analysis.

Int J Therm Sci. 2021-1

[2]
Heat transfer analysis of Cu and AlO dispersed in ethylene glycol as a base fluid over a stretchable permeable sheet of MHD thin-film flow.

Sci Rep. 2022-5-25

[3]
Numerical Investigation of Ferrofluid Preparation during In-Vitro Culture of Cancer Therapy for Magnetic Nanoparticle Hyperthermia.

Sensors (Basel). 2021-8-18

[4]
Cancer Statistics, 2021.

CA Cancer J Clin. 2021-1

[5]
The effect of constitutive pigmentation on the measured emissivity of human skin.

PLoS One. 2020-11-25

[6]
In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.

Int J Mol Sci. 2020-11-14

[7]
3D in silico study of magnetic fluid hyperthermia of breast tumor using FeO magnetic nanoparticles.

J Therm Biol. 2020-7

[8]
Numerical study of microwave induced thermoacoustic imaging for initial detection of cancer of breast on anatomically realistic breast phantom.

Comput Methods Programs Biomed. 2020-11

[9]
Mathematical Modeling of Breast Tumor Destruction Using Fast Heating during Radiofrequency Ablation.

Materials (Basel). 2019-12-28

[10]
Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning.

Int J Mol Sci. 2019-9-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索