Suppr超能文献

通过时间序列基因组规模代谢模型深入了解酵母对化疗药物的反应。

Insights into yeast response to chemotherapeutic agent through time series genome-scale metabolic models.

机构信息

Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey.

出版信息

Biotechnol Bioeng. 2024 Oct;121(10):3351-3359. doi: 10.1002/bit.28833. Epub 2024 Aug 28.

Abstract

Organism-specific genome-scale metabolic models (GSMMs) can unveil molecular mechanisms within cells and are commonly used in diverse applications, from synthetic biology, biotechnology, and systems biology to metabolic engineering. There are limited studies incorporating time-series transcriptomics in GSMM simulations. Yeast is an easy-to-manipulate model organism for tumor research. Here, a novel approach (TS-GSMM) was proposed to integrate time-series transcriptomics with GSMMs to narrow down the feasible solution space of all possible flux distributions and attain time-series flux samples. The flux samples were clustered using machine learning techniques, and the clusters' functional analysis was performed using reaction set enrichment analysis. A time series transcriptomics response of Yeast cells to a chemotherapeutic reagent-doxorubicin-was mapped onto a Yeast GSMM. Eleven flux clusters were obtained with our approach, and pathway dynamics were displayed. Induction of fluxes related to bicarbonate formation and transport, ergosterol and spermidine transport, and ATP production were captured. Integrating time-series transcriptomics data with GSMMs is a promising approach to reveal pathway dynamics without any kinetic modeling and detects pathways that cannot be identified through transcriptomics-only analysis. The codes are available at https://github.com/karabekmez/TS-GSMM.

摘要

生物体特异性基因组尺度代谢模型(GSMMs)可以揭示细胞内的分子机制,广泛应用于合成生物学、生物技术、系统生物学和代谢工程等多个领域。目前,将时间序列转录组学纳入 GSMM 模拟的研究还很有限。酵母是一种易于操作的肿瘤研究模型生物。在此,提出了一种新方法(TS-GSMM),将时间序列转录组学与 GSMM 相结合,缩小所有可能通量分布的可行解空间,并获得时间序列通量样本。使用机器学习技术对通量样本进行聚类,并使用反应集富集分析对聚类的功能进行分析。将酵母细胞对化疗药物阿霉素的时间序列转录组学反应映射到酵母 GSMM 上。通过我们的方法获得了 11 个通量聚类,并展示了途径动态。诱导与碳酸氢盐形成和转运、麦角固醇和亚精胺转运以及 ATP 产生相关的通量。将时间序列转录组学数据与 GSMM 相结合是一种很有前途的方法,可以在无需任何动力学建模的情况下揭示途径动态,并检测仅通过转录组学分析无法识别的途径。该代码可在 https://github.com/karabekmez/TS-GSMM 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验