Suppr超能文献

通过分析个体来捕捉单词学习者的异质性。

Capturing the Heterogeneity of Word Learners by Analyzing Persons.

作者信息

Jones Ian T, Kucker Sarah C, Perry Lynn K, Grice James W

机构信息

Department of Psychology, Oklahoma State University, Stillwater, OK 74078, USA.

Department of Psychology, Southern Methodist University, Dallas, TX 75205, USA.

出版信息

Behav Sci (Basel). 2024 Aug 13;14(8):708. doi: 10.3390/bs14080708.

Abstract

Accurately capturing children's word learning abilities is critical for advancing our understanding of language development. Researchers have demonstrated that utilizing more complex statistical methods, such as mixed-effects regression and hierarchical linear modeling, can lead to a more complete understanding of the variability observed within children's word learning abilities. In the current paper, we demonstrate how a person-centered approach to data analysis can provide additional insights into the heterogeneity of word learning ability among children while also aiding researchers' efforts to draw individual-level conclusions. Using previously published data with 32 typically developing and 32 late-talking infants who completed a novel noun generalization (NNG) task to assess word learning biases (i.e., shape and material biases), we compare this person-centered method to three traditional statistical approaches: (1) a -test against chance, (2) an analysis of variance (ANOVA), and (3) a mixed-effects regression. With each comparison, we present a novel question raised by the person-centered approach and show how results from the corresponding analyses can lead to greater nuance in our understanding of children's word learning capabilities. Person-centered methods, then, are shown to be valuable tools that should be added to the growing body of sophisticated statistical procedures used by modern researchers.

摘要

准确把握儿童的词汇学习能力对于深化我们对语言发展的理解至关重要。研究人员已经证明,运用更复杂的统计方法,如混合效应回归和分层线性建模,能够使我们对儿童词汇学习能力中观察到的变异性有更全面的理解。在本文中,我们展示了一种以人为主的数据分析方法如何能够为儿童词汇学习能力的异质性提供额外的见解,同时也有助于研究人员得出个体层面的结论。我们使用先前发表的数据,这些数据来自32名发育正常的婴儿和32名说话较晚的婴儿,他们完成了一项新颖名词泛化(NNG)任务以评估词汇学习偏好(即形状和材质偏好),我们将这种以人为主的方法与三种传统统计方法进行比较:(1)与机遇的t检验,(2)方差分析(ANOVA),以及(3)混合效应回归。在每次比较中,我们都提出一个由以人为主的方法引发的新问题,并展示相应分析的结果如何能使我们对儿童词汇学习能力的理解更加细致入微。因此,以人为主的方法被证明是有价值的工具,应添加到现代研究人员所使用的日益复杂的统计程序中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e44/11351650/2760fd306e71/behavsci-14-00708-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验