Hung Shao-Chi, Chan Te-Fu, Chan Hsiu-Chuan, Wu Chia-Ying, Chan Mei-Lin, Jhuang Jie-Yang, Tan Ji-Qin, Mei Jia-Bin, Law Shi-Hui, Ponnusamy Vinoth Kumar, Chan Hua-Chen, Ke Liang-Yin
Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Antioxidants (Basel). 2024 Aug 19;13(8):1007. doi: 10.3390/antiox13081007.
Gestational diabetes mellitus (GDM) is a common pregnancy disorder associated with an increased risk of pre-eclampsia and macrosomia. Recent research has shown that the buildup of excess lipids within the placental trophoblast impairs mitochondrial function. However, the exact lipids that impact the placental trophoblast and the underlying mechanism remain unclear. GDM cases and healthy controls were recruited at Kaohsiung Medical University Hospital. The placenta and cord blood were taken during birth. Confocal and electron microscopy were utilized to examine the morphology of the placenta and mitochondria. We determined the lipid composition using liquid chromatography-mass spectrometry in data-independent analysis mode (LC/MS). In vitro studies were carried out on choriocarcinoma cells (JEG3) to investigate the mechanism of trophoblast mitochondrial dysfunction. Results showed that the GDM placenta was distinguished by increased syncytial knots, chorangiosis, lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) overexpression, and mitochondrial dysfunction. Lysophosphatidylcholine (LPC) 16:0 was significantly elevated in the cord blood LDL of GDM patients. In vitro, we demonstrated that LPC dose-dependently disrupts mitochondrial function by increasing reactive oxygen species (ROS) levels and HIF-1α signaling. In conclusion, highly elevated LPC in cord blood plays a pivotal role in GDM, contributing to trophoblast impairment and pregnancy complications.
Clin Sci (Lond). 2020-9-30
Reprod Biol Endocrinol. 2019-10-23
Environ Sci Pollut Res Int. 2022-3
Biochim Biophys Acta Mol Basis Dis. 2020-12-1
Lancet. 2024-7-13
Eur J Cell Biol. 2023-12