Suppr超能文献

结合代谢组学和机器学习鉴定非小细胞肺癌患者放化疗前后的诊断和预后生物标志物。

Combining Metabolomics and Machine Learning to Identify Diagnostic and Prognostic Biomarkers in Patients with Non-Small Cell Lung Cancer Pre- and Post-Radiation Therapy.

机构信息

Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain.

Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain.

出版信息

Biomolecules. 2024 Jul 24;14(8):898. doi: 10.3390/biom14080898.

Abstract

Lung cancer is the leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) accounting for over 85% of cases and poor prognosis in advanced stages. This study explored shifts in circulating metabolite levels in NSCLC patients versus healthy controls and examined the effects of conventionally fractionated radiation therapy (CFRT) and stereotactic body radiation therapy (SBRT). We enrolled 91 NSCLC patients (38 CFRT and 53 SBRT) and 40 healthy controls. Plasma metabolite levels were assessed using semi-targeted metabolomics, revealing 32 elevated and 18 reduced metabolites in patients. Key discriminatory metabolites included ethylmalonic acid, maltose, 3-phosphoglyceric acid, taurine, glutamic acid, glycocolic acid, and d-arabinose, with a combined Receiver Operating Characteristics curve indicating perfect discrimination between patients and controls. CFRT and SBRT affected different metabolites, but both changes suggested a partial normalization of energy and amino acid metabolism pathways. In conclusion, metabolomics identified distinct metabolic signatures in NSCLC patients with potential as diagnostic biomarkers. The differing metabolic responses to CFRT and SBRT reflect their unique therapeutic impacts, underscoring the utility of this technique in enhancing NSCLC diagnosis and treatment monitoring.

摘要

肺癌是全球癌症相关死亡的主要原因,其中非小细胞肺癌(NSCLC)占病例的 85%以上,且晚期预后较差。本研究旨在探讨 NSCLC 患者与健康对照者循环代谢物水平的变化,并研究常规分割放疗(CFRT)和立体定向体部放疗(SBRT)的影响。我们纳入了 91 名 NSCLC 患者(38 名 CFRT 和 53 名 SBRT)和 40 名健康对照者。采用半靶向代谢组学评估血浆代谢物水平,结果显示患者中有 32 种代谢物升高,18 种代谢物降低。关键的区分代谢物包括乙基丙二酸、麦芽糖、3-磷酸甘油酸、牛磺酸、谷氨酸、甘醇酸和 D-阿拉伯糖,联合受试者工作特征曲线表明可以完美地区分患者和对照组。CFRT 和 SBRT 影响不同的代谢物,但两者的变化均提示能量和氨基酸代谢途径部分恢复正常。总之,代谢组学鉴定了 NSCLC 患者的独特代谢特征,具有作为诊断生物标志物的潜力。CFRT 和 SBRT 的不同代谢反应反映了它们独特的治疗影响,这突出了该技术在增强 NSCLC 诊断和治疗监测方面的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e50e/11353221/98175a89d31e/biomolecules-14-00898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验