Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
Institute of Applied Physics, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria.
Biomolecules. 2024 Aug 13;14(8):1001. doi: 10.3390/biom14081001.
Receptor-ligand interactions at cell interfaces initiate signaling cascades essential for cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules on antigen-presenting cells are crucial for T cell activation. The binding duration, or dwell time, of TCR-pMHC interactions correlates with downstream signaling efficacy, with strong agonists exhibiting longer lifetimes compared to weak agonists. Traditional surface plasmon resonance (SPR) methods quantify 3D affinity but lack cellular context and fail to account for factors like membrane fluctuations. In the recent years, single-molecule Förster resonance energy transfer (smFRET) has been applied to measure 2D binding kinetics of TCR-pMHC interactions in a cellular context. Here, we introduce a rigorous mathematical model based on survival analysis to determine exponentially distributed receptor-ligand interaction lifetimes, verified through simulated data. Additionally, we developed a comprehensive analysis pipeline to extract interaction lifetimes from raw microscopy images, demonstrating the model's accuracy and robustness across multiple TCR-pMHC pairs. Our new software suite automates data processing to enhance throughput and reduce bias. This methodology provides a refined tool for investigating T cell activation mechanisms, offering insights into immune response modulation.
细胞界面上的受体-配体相互作用引发信号级联反应,对于细胞通讯和效应功能至关重要。具体而言,T 细胞受体(TCR)与抗原呈递细胞上主要组织相容性复合物(pMHC)分子呈现的病原体衍生肽的相互作用对于 T 细胞的激活至关重要。TCR-pMHC 相互作用的结合持续时间或停留时间与下游信号转导效率相关,强激动剂的寿命比弱激动剂长。传统的表面等离子体共振(SPR)方法定量 3D 亲和力,但缺乏细胞环境,并且无法考虑膜波动等因素。近年来,单分子Förster 共振能量转移(smFRET)已被应用于测量细胞环境中 TCR-pMHC 相互作用的 2D 结合动力学。在这里,我们基于生存分析引入了一个严格的数学模型,以确定受体-配体相互作用寿命呈指数分布,通过模拟数据进行了验证。此外,我们开发了一个综合分析管道,从原始显微镜图像中提取相互作用寿命,证明了该模型在多个 TCR-pMHC 对中的准确性和稳健性。我们的新软件套件通过自动化数据处理来提高通量并减少偏差。该方法为研究 T 细胞激活机制提供了一种改进的工具,为免疫反应调节提供了深入的了解。