Suppr超能文献

ASD-GANNet:一种受生成对抗网络启发的用于自闭症脑部疾病分类的深度学习方法。

ASD-GANNet: A Generative Adversarial Network-Inspired Deep Learning Approach for the Classification of Autism Brain Disorder.

作者信息

Khan Naseer Ahmed, Shang Xuequn

机构信息

School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Brain Sci. 2024 Jul 29;14(8):766. doi: 10.3390/brainsci14080766.

Abstract

The classification of a pre-processed fMRI dataset using functional connectivity (FC)-based features is considered a challenging task because of the set of high-dimensional FC features and the small dataset size. To tackle this specific set of FC high-dimensional features and a small-sized dataset, we propose here a conditional Generative Adversarial Network (cGAN)-based dataset augmenter to first train the cGAN on computed connectivity features of NYU dataset and use the trained cGAN to generate synthetic connectivity features per category. After obtaining a sufficient number of connectivity features per category, a Multi-Head attention mechanism is used as a head for the classification. We name our proposed approach "ASD-GANNet", which is end-to-end and does not require hand-crafted features, as the Multi-Head attention mechanism focuses on the features that are more relevant. Moreover, we compare our results with the six available state-of-the-art techniques from the literature. Our proposed approach results using the "NYU" site as a training set for generating a cGAN-based synthetic dataset are promising. We achieve an overall 10-fold cross-validation-based accuracy of 82%, sensitivity of 82%, and specificity of 81%, outperforming available state-of-the art approaches. A sitewise comparison of our proposed approach also outperforms the available state-of-the-art, as out of the 17 sites, our proposed approach has better results in the 10 sites.

摘要

由于功能性连接(FC)特征集的高维度以及数据集规模较小,使用基于功能连接(FC)特征的预处理功能磁共振成像(fMRI)数据集进行分类被认为是一项具有挑战性的任务。为了解决这组特定的FC高维特征和小尺寸数据集的问题,我们在此提出一种基于条件生成对抗网络(cGAN)的数据集增强器,首先在纽约大学(NYU)数据集的计算连接特征上训练cGAN,并使用训练好的cGAN按类别生成合成连接特征。在每个类别获得足够数量的连接特征后,使用多头注意力机制作为分类的头部。我们将我们提出的方法命名为“ASD - GANNet”,它是端到端的,不需要手工制作的特征,因为多头注意力机制专注于更相关的特征。此外,我们将我们的结果与文献中六种现有的先进技术进行了比较。我们提出的方法使用“NYU”站点作为训练集来生成基于cGAN的合成数据集,其结果很有前景。我们基于10折交叉验证实现了82%的总体准确率、82%的灵敏度和81%的特异性,优于现有的先进方法。我们提出的方法在各个站点的比较中也优于现有技术,在17个站点中,我们提出的方法在10个站点上取得了更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c7/11352749/7d4fd1d50005/brainsci-14-00766-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验