Suppr超能文献

DarkASDNet:使用深度神经网络对功能磁共振成像进行自闭症谱系障碍分类

DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural Network.

作者信息

Ahammed Md Shale, Niu Sijie, Ahmed Md Rishad, Dong Jiwen, Gao Xizhan, Chen Yuehui

机构信息

Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, China.

École de Technologie Supérieure (ÉTS), Montreal, QC, Canada.

出版信息

Front Neuroinform. 2021 Jun 24;15:635657. doi: 10.3389/fninf.2021.635657. eCollection 2021.

Abstract

Non-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum disorders (ASD) is rationally challenging due to the limitations of publicly available datasets. For diagnostic or prognostic tools, functional Magnetic Resonance Imaging (fMRI) exposed affirmation to the biomarkers in neuroimaging research because of fMRI pickup inherent connectivity between the brain and regions. There are profound studies in ASD with introducing machine learning or deep learning methods that have manifested advanced steps for ASD predictions based on fMRI data. However, utmost antecedent models have an inadequacy in their capacity to manipulate performance metrics such as accuracy, precision, recall, and F1-score. To overcome these problems, we proposed an avant-garde DarkASDNet, which has the competence to extract features from a lower level to a higher level and bring out promising results. In this work, we considered 3D fMRI data to predict binary classification between ASD and typical control (TC). Firstly, we pre-processed the 3D fMRI data by adopting proper slice time correction and normalization. Then, we introduced a novel DarkASDNet which surpassed the benchmark accuracy for the classification of ASD. Our model's outcomes unveil that our proposed method established state-of-the-art accuracy of 94.70% to classify ASD vs. TC in ABIDE-I, NYU dataset. Finally, we contemplated our model by performing evaluation metrics including precision, recall, F1-score, ROC curve, and AUC score, and legitimize by distinguishing with recent literature descriptions to vindicate our outcomes. The proposed DarkASDNet architecture provides a novel benchmark approach for ASD classification using fMRI processed data.

摘要

非侵入性全脑扫描有助于诊断自闭症、痴呆症和脑癌等神经精神疾病。由于公开可用数据集的局限性,对自闭症谱系障碍(ASD)进行可评估分析具有合理的挑战性。对于诊断或预后工具,功能磁共振成像(fMRI)在神经成像研究中揭示了生物标志物,因为fMRI能够检测大脑与各区域之间的固有连接。在ASD研究中,有深入的研究引入了机器学习或深度学习方法,这些方法基于fMRI数据在ASD预测方面取得了进展。然而,大多数先前的模型在处理准确率、精确率、召回率和F1分数等性能指标方面存在不足。为了克服这些问题,我们提出了一种先进的DarkASDNet,它有能力从低层次到高层次提取特征,并取得了有前景的结果。在这项工作中,我们考虑使用三维功能磁共振成像数据来预测自闭症谱系障碍(ASD)与典型对照组(TC)之间的二元分类。首先,我们通过采用适当的切片时间校正和归一化对三维功能磁共振成像数据进行预处理。然后,我们引入了一种新颖的DarkASDNet,其在ASD分类方面超过了基准准确率。我们模型的结果表明,我们提出的方法在ABIDE-I、纽约大学数据集中对ASD与TC进行分类时达到了94.70%的最新准确率。最后,我们通过执行包括精确率、召回率、F1分数、ROC曲线和AUC分数在内的评估指标来评估我们的模型,并通过与近期文献描述进行区分来验证我们的结果,以证明我们的成果。所提出的DarkASDNet架构为使用功能磁共振成像处理数据进行ASD分类提供了一种新颖的基准方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9920/8265393/cecbcce9d270/fninf-15-635657-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验