Suppr超能文献

光遗传学脑机接口

Optogenetic Brain-Computer Interfaces.

作者信息

Tang Feifang, Yan Feiyang, Zhong Yushan, Li Jinqian, Gong Hui, Li Xiangning

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China.

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China.

出版信息

Bioengineering (Basel). 2024 Aug 12;11(8):821. doi: 10.3390/bioengineering11080821.

Abstract

The brain-computer interface (BCI) is one of the most powerful tools in neuroscience and generally includes a recording system, a processor system, and a stimulation system. Optogenetics has the advantages of bidirectional regulation, high spatiotemporal resolution, and cell-specific regulation, which expands the application scenarios of BCIs. In recent years, optogenetic BCIs have become widely used in the lab with the development of materials and software. The systems were designed to be more integrated, lightweight, biocompatible, and power efficient, as were the wireless transmission and chip-level embedded BCIs. The software is also constantly improving, with better real-time performance and accuracy and lower power consumption. On the other hand, as a cutting-edge technology spanning multidisciplinary fields including molecular biology, neuroscience, material engineering, and information processing, optogenetic BCIs have great application potential in neural decoding, enhancing brain function, and treating neural diseases. Here, we review the development and application of optogenetic BCIs. In the future, combined with other functional imaging techniques such as near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), optogenetic BCIs can modulate the function of specific circuits, facilitate neurological rehabilitation, assist perception, establish a brain-to-brain interface, and be applied in wider application scenarios.

摘要

脑机接口(BCI)是神经科学中最强大的工具之一,通常包括记录系统、处理器系统和刺激系统。光遗传学具有双向调节、高时空分辨率和细胞特异性调节等优点,这扩展了脑机接口的应用场景。近年来,随着材料和软件的发展,光遗传脑机接口在实验室中得到了广泛应用。这些系统在设计上更加集成化、轻量化、生物相容性好且功耗低,无线传输和芯片级嵌入式脑机接口也是如此。软件也在不断改进,具有更好的实时性能、准确性和更低的功耗。另一方面,作为一项跨越分子生物学、神经科学、材料工程和信息处理等多学科领域的前沿技术,光遗传脑机接口在神经解码、增强脑功能和治疗神经疾病方面具有巨大的应用潜力。在此,我们综述光遗传脑机接口的发展与应用。未来,光遗传脑机接口与近红外光谱(fNIRS)和功能磁共振成像(fMRI)等其他功能成像技术相结合,可调节特定回路的功能,促进神经康复,辅助感知,建立脑对脑接口,并应用于更广泛的应用场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c60/11351350/b9dc0f1991ed/bioengineering-11-00821-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验