Department of Physics, Stanford University, Stanford, CA, USA.
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Nat Commun. 2022 Nov 4;13(1):6627. doi: 10.1038/s41467-022-34353-y.
Localized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 μm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns. We validated the computational modeling of the field confinement in such an optically-controlled circuit by in-vitro and in-vivo measurements. Most importantly, using this strategy, we demonstrated that the grating acuity with 40 μm pixels matches the pixel pitch, while with 20 μm pixels, it reaches the 28 μm limit of the natural visual resolution in rats. This method enables customized field shaping based on individual retinal thickness and distance from the implant, paving the way to higher acuity of prosthetic vision in atrophic macular degeneration.
为实现高分辨率的仿生视觉,内视网膜神经元的局部刺激需要小像素和最小的相邻电极串扰。每个像素内的局部返回电极限制了串扰,但也过度限制了电场,从而使亚视网膜像素小于 55μm 的刺激效率降低。在这里,我们展示了一种基于光伏阵列的新型设计的高分辨率仿生视觉,其中通过利用正向偏置下二极管的可调导电性来动态实现场限制,将指定的像素转换为瞬态返回,从而实现了场限制。我们通过体外和体内测量验证了这种光控电路中对场限制的计算建模。最重要的是,使用这种策略,我们证明了具有 40μm 像素的光栅分辨率与像素间距匹配,而具有 20μm 像素的分辨率则达到了大鼠自然视觉分辨率 28μm 的极限。这种方法可以根据个体视网膜的厚度和与植入物的距离来定制场形,为萎缩性黄斑变性中的仿生视觉提供更高的分辨率铺平了道路。