Suppr超能文献

用于个性化糖尿病预测的去中心化安全协作框架

Decentralized and Secure Collaborative Framework for Personalized Diabetes Prediction.

作者信息

Hasan Md Rakibul, Li Qingrui, Saha Utsha, Li Juan

机构信息

Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA.

出版信息

Biomedicines. 2024 Aug 21;12(8):1916. doi: 10.3390/biomedicines12081916.

Abstract

Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.

摘要

糖尿病是一种全球性流行病,对个人和医疗保健系统都有严重影响。虽然早期和个性化预测可以显著改善治疗结果,但传统的集中式预测模型存在隐私风险和数据多样性有限的问题。本文介绍了一种新颖的框架,该框架集成了区块链和联邦学习来应对这些挑战。区块链为数据管理、访问控制和可审计性提供了一个安全、去中心化的基础。联邦学习能够在不损害患者隐私的情况下对分布式数据集进行模型训练。这种协作方法利用多个医疗机构的综合数据资源,促进了更强大、更个性化的糖尿病预测模型的开发。我们进行了广泛的评估实验和安全分析。结果表明,与集中式方法相比,该框架性能良好,同时显著增强了隐私和安全性。我们的框架为糖尿病预测中医疗数据的道德和有效使用提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2bb/11351311/0a52bdd18018/biomedicines-12-01916-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验