Hasan Md Rakibul, Li Qingrui, Saha Utsha, Li Juan
Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA.
Biomedicines. 2024 Aug 21;12(8):1916. doi: 10.3390/biomedicines12081916.
Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.
糖尿病是一种全球性流行病,对个人和医疗保健系统都有严重影响。虽然早期和个性化预测可以显著改善治疗结果,但传统的集中式预测模型存在隐私风险和数据多样性有限的问题。本文介绍了一种新颖的框架,该框架集成了区块链和联邦学习来应对这些挑战。区块链为数据管理、访问控制和可审计性提供了一个安全、去中心化的基础。联邦学习能够在不损害患者隐私的情况下对分布式数据集进行模型训练。这种协作方法利用多个医疗机构的综合数据资源,促进了更强大、更个性化的糖尿病预测模型的开发。我们进行了广泛的评估实验和安全分析。结果表明,与集中式方法相比,该框架性能良好,同时显著增强了隐私和安全性。我们的框架为糖尿病预测中医疗数据的道德和有效使用提供了一个有前景的解决方案。