Helmholtz Institute for Metabolic, Obesity and Vascular Research, Helmholtz Zentrum München of the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany.
Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107 Leipzig, Germany.
Int J Mol Sci. 2024 Aug 13;25(16):8823. doi: 10.3390/ijms25168823.
Transfer RNA (tRNA) modifications are essential for the temperature adaptation of thermophilic and psychrophilic organisms as they control the rigidity and flexibility of transcripts. To further understand how specific tRNA modifications are adjusted to maintain functionality in response to temperature fluctuations, we investigated whether tRNA modifications represent an adaptation of bacteria to different growth temperatures (minimal, optimal, and maximal), focusing on closely related psychrophilic ( and ), mesophilic (), and thermophilic () Bacillales. Utilizing an RNA sequencing approach combined with chemical pre-treatment of tRNA samples, we systematically profiled dihydrouridine (D), 4-thiouridine (sU), 7-methyl-guanosine (mG), and pseudouridine (Ψ) modifications at single-nucleotide resolution. Despite their close relationship, each bacterium exhibited a unique tRNA modification profile. Our findings revealed increased tRNA modifications in the thermophilic bacterium at its optimal growth temperature, particularly showing elevated levels of sU8 and Ψ55 modifications compared to non-thermophilic bacteria, indicating a temperature-dependent regulation that may contribute to thermotolerance. Furthermore, we observed higher levels of D modifications in psychrophilic and mesophilic bacteria, indicating an adaptive strategy for cold environments by enhancing local flexibility in tRNAs. Our method demonstrated high effectiveness in identifying tRNA modifications compared to an established tool, highlighting its potential for precise tRNA profiling studies.
转移 RNA(tRNA)修饰对于嗜热和嗜冷生物的温度适应至关重要,因为它们控制着转录本的刚性和灵活性。为了进一步了解特定的 tRNA 修饰如何进行调整以维持功能以应对温度波动,我们研究了 tRNA 修饰是否代表细菌对不同生长温度(最小、最佳和最大)的适应,重点关注密切相关的嗜冷菌(和)、中温菌()和嗜热菌()芽孢杆菌。我们利用 RNA 测序方法结合 tRNA 样品的化学预处理,系统地在单核苷酸分辨率上描绘了二氢尿嘧啶(D)、4-硫代尿嘧啶(sU)、7-甲基鸟苷(mG)和假尿嘧啶(Ψ)修饰。尽管它们密切相关,但每种细菌都表现出独特的 tRNA 修饰谱。我们的研究结果表明,在最佳生长温度下,嗜热菌的 tRNA 修饰增加,与非嗜热菌相比,sU8 和 Ψ55 修饰的水平升高,表明存在温度依赖性调节,可能有助于耐热性。此外,我们观察到在嗜冷菌和中温菌中 D 修饰水平较高,表明通过增强 tRNA 中的局部灵活性来适应寒冷环境的一种适应策略。与已建立的工具相比,我们的方法在鉴定 tRNA 修饰方面表现出很高的有效性,突出了其在精确 tRNA 分析研究中的潜力。