Stefański Piotr, Kozak Jan, Jach Tomasz
Department of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, Poland.
Entropy (Basel). 2024 Jul 23;26(8):617. doi: 10.3390/e26080617.
Computer vision in sports analytics is gaining in popularity. Monitoring players' performance using cameras is more flexible and does not interfere with player equipment compared to systems using sensors. This provides a wide set of opportunities for computer vision systems that help coaches, reporters, and audiences. This paper provides an introduction to the problem of measuring boxers' performance, with a comprehensive survey of approaches in current science. The main goal of the paper is to provide a system to automatically detect punches in Olympic boxing using a single static camera. The authors use Euclidean distance to measure the distance between boxers and convolutional neural networks to classify footage frames. In order to improve classification performance, we provide and test three approaches to manipulating the images prior to fitting the classifier. The proposed solution achieves 95% balanced accuracy, 49% F1 score for frames with punches, and 97% for frames without punches. Finally, we present a working system for analyses of a boxing scene that marks boxers and labelled frames with detected clashes and punches.
计算机视觉在体育分析中越来越受欢迎。与使用传感器的系统相比,使用摄像头监测运动员的表现更加灵活,并且不会干扰运动员的装备。这为帮助教练、记者和观众的计算机视觉系统提供了广泛的机会。本文介绍了衡量拳击手表现的问题,并对当前科学中的方法进行了全面调查。本文的主要目标是提供一个使用单个静态摄像头自动检测奥运会拳击比赛中拳击动作的系统。作者使用欧几里得距离来测量拳击手之间的距离,并使用卷积神经网络对视频帧进行分类。为了提高分类性能,我们提供并测试了三种在拟合分类器之前对图像进行处理的方法。所提出的解决方案实现了95%的平衡准确率,对于有拳击动作的帧,F1分数为49%,对于没有拳击动作的帧,F1分数为97%。最后,我们展示了一个用于分析拳击场景的工作系统,该系统可以标记拳击手以及带有检测到的冲突和拳击动作的标记帧。