Suppr超能文献

生成对抗网络(GANs)开发与性能评估中的见解与思考:放射科医生需要了解的内容。

Insights and Considerations in Development and Performance Evaluation of Generative Adversarial Networks (GANs): What Radiologists Need to Know.

作者信息

Yoon Jeong Taek, Lee Kyung Mi, Oh Jang-Hoon, Kim Hyug-Gi, Jeong Ji Won

机构信息

Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Department of Medicine, Graduate School, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 Aug 13;14(16):1756. doi: 10.3390/diagnostics14161756.

Abstract

The rapid development of deep learning in medical imaging has significantly enhanced the capabilities of artificial intelligence while simultaneously introducing challenges, including the need for vast amounts of training data and the labor-intensive tasks of labeling and segmentation. Generative adversarial networks (GANs) have emerged as a solution, offering synthetic image generation for data augmentation and streamlining medical image processing tasks through models such as cGAN, CycleGAN, and StyleGAN. These innovations not only improve the efficiency of image augmentation, reconstruction, and segmentation, but also pave the way for unsupervised anomaly detection, markedly reducing the reliance on labeled datasets. Our investigation into GANs in medical imaging addresses their varied architectures, the considerations for selecting appropriate GAN models, and the nuances of model training and performance evaluation. This paper aims to provide radiologists who are new to GAN technology with a thorough understanding, guiding them through the practical application and evaluation of GANs in brain imaging with two illustrative examples using CycleGAN and pixel2style2pixel (pSp)-combined StyleGAN. It offers a comprehensive exploration of the transformative potential of GANs in medical imaging research. Ultimately, this paper strives to equip radiologists with the knowledge to effectively utilize GANs, encouraging further research and application within the field.

摘要

深度学习在医学成像领域的快速发展显著增强了人工智能的能力,同时也带来了挑战,包括需要大量训练数据以及标记和分割等劳动密集型任务。生成对抗网络(GAN)应运而生,通过诸如cGAN、CycleGAN和StyleGAN等模型,为数据增强提供合成图像生成,并简化医学图像处理任务。这些创新不仅提高了图像增强、重建和分割的效率,还为无监督异常检测铺平了道路,显著减少了对标记数据集的依赖。我们对医学成像中GAN的研究涉及它们的各种架构、选择合适GAN模型的考量因素以及模型训练和性能评估的细微差别。本文旨在让刚接触GAN技术的放射科医生全面了解该技术,通过使用CycleGAN和像素到风格再到像素(pSp)组合的StyleGAN的两个示例,指导他们在脑成像中实际应用和评估GAN。它全面探讨了GAN在医学成像研究中的变革潜力。最终,本文努力让放射科医生掌握有效利用GAN的知识,鼓励在该领域进行进一步研究和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de74/11353572/0eebe92af946/diagnostics-14-01756-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验