Suppr超能文献

生成对抗网络及其在生物医学图像分割中的应用:全面综述。

Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey.

作者信息

Iqbal Ahmed, Sharif Muhammad, Yasmin Mussarat, Raza Mudassar, Aftab Shabib

机构信息

Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan.

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan.

出版信息

Int J Multimed Inf Retr. 2022;11(3):333-368. doi: 10.1007/s13735-022-00240-x. Epub 2022 Jul 8.

Abstract

Recent advancements with deep generative models have proven significant potential in the task of image synthesis, detection, segmentation, and classification. Segmenting the medical images is considered a primary challenge in the biomedical imaging field. There have been various GANs-based models proposed in the literature to resolve medical segmentation challenges. Our research outcome has identified 151 papers; after the twofold screening, 138 papers are selected for the final survey. A comprehensive survey is conducted on GANs network application to medical image segmentation, primarily focused on various GANs-based models, performance metrics, loss function, datasets, augmentation methods, paper implementation, and source codes. Secondly, this paper provides a detailed overview of GANs network application in different human diseases segmentation. We conclude our research with critical discussion, limitations of GANs, and suggestions for future directions. We hope this survey is beneficial and increases awareness of GANs network implementations for biomedical image segmentation tasks.

摘要

深度生成模型的最新进展已在图像合成、检测、分割和分类任务中展现出巨大潜力。医学图像分割被视为生物医学成像领域的一项主要挑战。文献中已提出了各种基于生成对抗网络(GAN)的模型来解决医学分割难题。我们的研究成果筛选出了151篇论文;经过两轮筛选后,最终选定138篇论文进行综述。本文对GAN网络在医学图像分割中的应用进行了全面综述,主要聚焦于各种基于GAN的模型、性能指标、损失函数、数据集、增强方法、论文实现及源代码。其次,本文详细概述了GAN网络在不同人类疾病分割中的应用。我们通过批判性讨论、GAN的局限性以及对未来方向的建议来总结我们的研究。我们希望这项综述是有益的,并能提高人们对用于生物医学图像分割任务的GAN网络实现的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bea9/9264294/02ae495ebc72/13735_2022_240_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验