Suppr超能文献

基于密度和深度学习的纹理分析相结合在乳腺癌筛查中对短期和长期风险分层的临床意义

Clinical Significance of Combined Density and Deep-Learning-Based Texture Analysis for Stratifying the Risk of Short-Term and Long-Term Breast Cancer in Screening.

作者信息

Vilmun Bolette Mikela, Napolitano George, Lauritzen Andreas, Lynge Elsebeth, Lillholm Martin, Nielsen Michael Bachmann, Vejborg Ilse

机构信息

Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.

Department of Breast Examinations, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark.

出版信息

Diagnostics (Basel). 2024 Aug 21;14(16):1823. doi: 10.3390/diagnostics14161823.

Abstract

Assessing a woman's risk of breast cancer is important for personalized screening. Mammographic density is a strong risk factor for breast cancer, but parenchymal texture patterns offer additional information which cannot be captured by density. We aimed to combine BI-RADS density score 4th Edition and a deep-learning-based texture score to stratify women in screening and compare rates among the combinations. This retrospective study cohort study included 216,564 women from a Danish populations-based screening program. Baseline mammograms were evaluated using BI-RADS density scores (1-4) and a deep-learning texture risk model, with scores categorized into four quartiles (1-4). The incidence rate ratio (IRR) for screen-detected, interval, and long-term cancer were adjusted for age, year of screening and screening clinic. Compared with subgroup B1-T1, the highest IRR for screen-detected cancer were within the T4 category (3.44 (95% CI: 2.43-4.82)-4.57 (95% CI: 3.66-5.76)). IRR for interval cancer was highest in the BI-RADS 4 category (95% CI: 5.36 (1.77-13.45)-16.94 (95% CI: 9.93-30.15)). IRR for long-term cancer increased both with increasing BI-RADS and increasing texture reaching 5.15 (4.31-6.16) for the combination of B4-T4 compared with B1-T1. Deep-learning-based texture analysis combined with BI-RADS density categories can reveal subgroups with increased rates beyond what density alone can ascertain, suggesting the potential of combining texture and density to improve risk stratification in breast cancer screening.

摘要

评估女性患乳腺癌的风险对于个性化筛查至关重要。乳腺钼靶密度是乳腺癌的一个重要风险因素,但实质纹理模式提供了密度无法捕捉的额外信息。我们旨在将BI-RADS密度评分第4版与基于深度学习的纹理评分相结合,对筛查中的女性进行分层,并比较各组合之间的发病率。这项回顾性队列研究纳入了来自丹麦基于人群的筛查项目的216,564名女性。使用BI-RADS密度评分(1-4)和深度学习纹理风险模型对基线乳腺钼靶进行评估,评分分为四个四分位数(1-4)。对筛查发现的、间期和长期癌症的发病率比(IRR)进行年龄、筛查年份和筛查诊所的校正。与B1-T1亚组相比,筛查发现癌症的最高IRR在T4类别中(3.44(95%CI:2.43-4.82)-4.57(95%CI:3.66-5.76))。间期癌症的IRR在BI-RADS 4类别中最高(95%CI:5.36(1.77-13.45)-16.94(95%CI:9.93-30.15))。长期癌症的IRR随着BI-RADS和纹理的增加而增加,与B1-T1相比,B4-T4组合的IRR达到5.15(4.31-6.16)。基于深度学习的纹理分析与BI-RADS密度类别相结合,可以揭示出发病率高于仅靠密度所能确定的亚组,这表明将纹理和密度相结合在改善乳腺癌筛查风险分层方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40ee/11353655/faf5fd8d1acc/diagnostics-14-01823-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验