Suppr超能文献

乳腺影像纹理与密度联合对乳腺癌风险的影响:一项队列研究。

The combined effect of mammographic texture and density on breast cancer risk: a cohort study.

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.

Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.

出版信息

Breast Cancer Res. 2018 May 2;20(1):36. doi: 10.1186/s13058-018-0961-7.

Abstract

BACKGROUND

Texture patterns have been shown to improve breast cancer risk segregation in addition to area-based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic density measures in a large screening cohort has never been studied.

METHODS

Volumetric mammographic density and texture pattern scores were assessed automatically for the first available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was developed in a previous study and validated in the current study. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The associations between texture pattern scores, volumetric breast density measures and breast cancer risk were determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices.

RESULTS

The median age of the women at the time of the first available digital mammography examination was 56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16 (95% CI 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61 (95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer risk (HR 1.85 (95% CI 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% CI 1.51-3.12) (p value for trend <0.001), respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage dense volume, c-indices increased from 0.56 (95% CI 0.53-0.59) to 0.62 (95% CI 0.58-0.65) (p < 0.001) and from 0.58 (95% CI 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively.

CONCLUSIONS

Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity to discriminate between future breast cancer and non-breast cancer cases.

摘要

背景

除了基于面积的乳腺密度外,纹理模式也被证明可以改善乳腺癌风险的细分。在大型筛查队列中,基于体积的乳腺密度测量之上的纹理模式评分的附加价值从未被研究过。

方法

对 51400 名(50-75 岁)女性的首次数字乳腺摄影(DM)筛查检查自动评估了体积乳腺密度和纹理模式评分,这些女性参加了 2003 年至 2011 年期间的荷兰两年一次的乳腺癌筛查计划。纹理评估方法是在之前的研究中开发的,并在本研究中得到了验证。从筛查登记系统和荷兰癌症登记处获得了乳腺癌信息。排除了在首次数字筛查检查中诊断出的所有筛查发现的乳腺癌。在中位随访期为 4.2 年(四分位间距(IQR)为 2.0-6.2)期间,301 名女性被诊断患有乳腺癌。使用 Cox 比例风险分析确定纹理模式评分、体积乳腺密度测量值与乳腺癌风险之间的关联。使用 c 指数评估判别性能。

结果

首次数字乳腺摄影检查时女性的中位年龄为 56 岁(IQR 51-63)。纹理模式评分与乳腺癌风险呈正相关(危险比(HR)3.16(95%CI 2.16-4.62)(趋势检验的 p 值<0.001),与 Q1 相比,Q4)。纹理的 c 指数为 0.61(95%CI 0.57-0.64)。致密体积和致密百分比与乳腺癌风险呈正相关(HR 1.85(95%CI 1.32-2.59)(趋势检验的 p 值<0.001)和 HR 2.17(95%CI 1.51-3.12)(趋势检验的 p 值<0.001),与 Q4 相比,Q1)。当将纹理测量值添加到具有致密体积或致密百分比的模型中时,c 指数从 0.56(95%CI 0.53-0.59)增加到 0.62(95%CI 0.58-0.65)(p<0.001)和从 0.58(95%CI 0.54-0.61)增加到 0.60(95%CI 0.57-0.63)(p=0.054)。

结论

基于深度学习的纹理模式评分,在数字乳腺钼靶片上自动测量,与乳腺癌风险相关,独立于体积乳腺密度,并提高了区分未来乳腺癌和非乳腺癌病例的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71a/5932877/d5648cd07d0d/13058_2018_961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验