文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合宏基因组学和代谢组学分析揭示了与仔猪断奶应激相关的关键肠道微生物群和代谢物。

Integrated Metagenomic and Metabolomics Profiling Reveals Key Gut Microbiota and Metabolites Associated with Weaning Stress in Piglets.

机构信息

College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.

Key Laboratory of Local Animal Genetic Resources Conversion and Bio-Breeding of Anhui Province, Hefei 230036, China.

出版信息

Genes (Basel). 2024 Jul 23;15(8):970. doi: 10.3390/genes15080970.


DOI:10.3390/genes15080970
PMID:39202331
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11354067/
Abstract

(1) Background: Weaning is a challenging and stressful event in the pig's life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites associated with weaning stress in piglets. (2) Methods: A total of ten newborn piglet littermates were randomly assigned to two groups: S (suckling normally) and W (weaned at 21 d; all euthanized at 23 d). Specimens of the cecum were dehydrated with ethanol, cleared with xylene, embedded in paraffin, and cut into 4 mm thick serial sections. After deparaffinization, the sections were stained with hematoxylin and eosin (H&E) for morphometric analysis. Cecal metagenomic and liver LC-MS-based metabolomics were employed in this study. Statistical comparisons were performed by a two-tailed Student's -test, and < 0.05 indicated statistical significance. (3) Results: The results showed that weaning led to intestinal morphological damage in piglets. The intestinal villi of suckling piglets were intact, closely arranged in an orderly manner, and finger-shaped, with clear contours of columnar epithelial cells. In contrast, the intestines of weaned piglets showed villous atrophy and shedding, as well as mucosal bleeding. Metagenomics and metabolomics analyses showed significant differences in composition and function between suckling and weaned piglets. The W piglets showed a decrease and increase in the relative abundance of and ( < 0.05), respectively. The core cecal flora in W piglets were and , while those in S piglets were and . At the phylum level, the relative abundance of significantly decreased ( < 0.05) in weaned piglets, while significantly increased ( < 0.05). Significant inter-group differences were observed in pathways and glycoside hydrolases in databases, such as the KEGG and CAZymes, including fructose and mannose metabolism, salmonella infection, antifolate resistance, GH135, GH16, GH32, and GH84. We identified 757 differential metabolites between the groups through metabolomic analyses-350 upregulated and 407 downregulated (screened in positive ion mode). In negative ion mode, 541 differential metabolites were identified, with 270 upregulated and 271 downregulated. Major differential metabolites included glycerophospholipids, histidine, nitrogen metabolism, glycine, serine, threonine, β-alanine, and primary bile acid biosynthesis. The significant differences in glycine, serine, and threonine metabolites may be potentially related to dysbiosis caused by weaning stress. Taken together, the identification of microbiome and metabolome signatures of suckling and weaned piglets has paved the way for developing health-promoting nutritional strategies, focusing on enhancing bacterial metabolite production in early life stages.

摘要

(1)背景:断奶是猪生命中的一个具有挑战性和压力的事件,会破坏生理平衡并引发氧化应激。在仔猪的断奶过程中,微生物群起着重要作用。因此,本研究旨在调查与仔猪断奶应激相关的关键肠道微生物群和代谢物。(2)方法:总共随机分配了 10 只新生仔猪同窝仔到两个组:S(正常哺乳)和 W(21 日龄断奶;均于 23 日龄处死)。盲肠标本用乙醇脱水,二甲苯透明,石蜡包埋,切成 4mm 厚的连续切片。脱蜡后,用苏木精和伊红(H&E)染色进行形态计量分析。本研究采用盲肠宏基因组和肝脏 LC-MS 代谢组学。采用双尾 Student's t 检验进行统计比较, < 0.05 表示具有统计学意义。(3)结果:结果表明,断奶导致仔猪肠道形态损伤。哺乳仔猪的肠绒毛完整,排列紧密有序,呈指状,柱状上皮细胞轮廓清晰。相比之下,断奶仔猪的肠道出现绒毛萎缩和脱落,以及黏膜出血。宏基因组学和代谢组学分析显示,哺乳和断奶仔猪的组成和功能存在显著差异。W 仔猪的 和 ( < 0.05)相对丰度分别降低和增加。W 仔猪的核心盲肠菌群为 和 ,而 S 仔猪的核心盲肠菌群为 和 。在门水平上,断奶仔猪的 ( < 0.05)相对丰度显著降低,而 ( < 0.05)显著增加。KEGG 和 CAZymes 等数据库中的途径和糖苷水解酶存在显著的组间差异,包括果糖和甘露糖代谢、沙门氏菌感染、抗叶酸耐药性、GH135、GH16、GH32 和 GH84。通过代谢组学分析,我们在两组之间鉴定出 757 个差异代谢物-350 个上调和 407 个下调(在正离子模式下筛选)。在负离子模式下,鉴定出 541 个差异代谢物,其中 270 个上调,271 个下调。主要差异代谢物包括甘油磷脂、组氨酸、氮代谢、甘氨酸、丝氨酸、苏氨酸、β-丙氨酸和初级胆汁酸生物合成。甘氨酸、丝氨酸和苏氨酸代谢物的显著差异可能与断奶应激引起的菌群失调有关。总之,对哺乳和断奶仔猪的微生物组和代谢组特征的鉴定为开发促进健康的营养策略铺平了道路,重点是在生命早期阶段增强细菌代谢产物的产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/b75639f97571/genes-15-00970-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/5682ea19b86d/genes-15-00970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/c1f25bdd41a2/genes-15-00970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/a266ba4be8ce/genes-15-00970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/44131d4ea268/genes-15-00970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/e5db55108872/genes-15-00970-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/6172b62980f2/genes-15-00970-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/b75639f97571/genes-15-00970-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/5682ea19b86d/genes-15-00970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/c1f25bdd41a2/genes-15-00970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/a266ba4be8ce/genes-15-00970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/44131d4ea268/genes-15-00970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/e5db55108872/genes-15-00970-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/6172b62980f2/genes-15-00970-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2e/11354067/b75639f97571/genes-15-00970-g007.jpg

相似文献

[1]
Integrated Metagenomic and Metabolomics Profiling Reveals Key Gut Microbiota and Metabolites Associated with Weaning Stress in Piglets.

Genes (Basel). 2024-7-23

[2]
Gut Microbiota-Derived Metabolite Signature in Suckling and Weaned Piglets.

J Proteome Res. 2021-1-1

[3]
Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets.

BMC Microbiol. 2021-3-22

[4]
Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets.

Sci Rep. 2018-12-24

[5]
Plant-oriented microbiome inoculum modulates age-related maturation of gut-mucosal expression of innate immune and barrier function genes in suckling and weaned piglets.

J Anim Sci. 2023-1-3

[6]
Exposure to plant-oriented microbiome altered jejunal and colonic innate immune response and barrier function more strongly in suckling than in weaned piglets.

J Anim Sci. 2022-11-1

[7]
Combined supplementation with Lactobacillus sp. and Bifidobacterium thermacidophilum isolated from Tibetan pigs improves growth performance, immunity, and microbiota composition in weaned piglets.

J Anim Sci. 2023-1-3

[8]
Neonatal Diet Impacts the Large Intestine Luminal Metabolome at Weaning and Post-Weaning in Piglets Fed Formula or Human Milk.

Front Immunol. 2020-12-7

[9]
Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets.

J Anim Sci. 2014-4

[10]
Elucidating the modulatory role of dietary hydroxyproline on the integrity and functional performance of the intestinal barrier in early-weaned piglets: A comprehensive analysis of its interplay with the gut microbiota and metabolites.

Int Immunopharmacol. 2024-6-15

引用本文的文献

[1]
Comparison of fecal microbiota and metabolites in diarrheal piglets pre-and post-weaning.

Front Vet Sci. 2025-6-20

本文引用的文献

[1]
Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets.

Microbiol Spectr. 2023-6-15

[2]
The Gut-Liver Axis in Pediatric Liver Health and Disease.

Microorganisms. 2023-2-27

[3]
Understanding respiratory microbiome-immune system interactions in health and disease.

Sci Transl Med. 2023-1-11

[4]
Weaning stress and intestinal health of piglets: A review.

Front Immunol. 2022

[5]
Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics.

J Anim Sci Biotechnol. 2022-11-18

[6]
Host-microbiome interactions: Gut-Liver axis and its connection with other organs.

NPJ Biofilms Microbiomes. 2022-11-1

[7]
Gut-liver axis: Pathophysiological concepts and clinical implications.

Cell Metab. 2022-11-1

[8]
Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity.

Microbiol Spectr. 2022-4-27

[9]
TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile.

Cell. 2022-3-17

[10]
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides.

Nat Commun. 2022-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索