Wronka Marta, Wojnicz Damian, Kowaluk Grzegorz
Faculty of Human Nutrition, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland.
Institute of Wood Science and Furniture, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland.
Materials (Basel). 2024 Aug 20;17(16):4128. doi: 10.3390/ma17164128.
This study investigates the potential of utilizing hazelnut shells (HS) as an innovative filler in three-layer plywood technology, addressing the growing need for sustainable, high-performance materials. Traditional plywood production relies on adhesives enhanced with various fillers to improve physical, mechanical, and operational characteristics. This research explores using native, chemically modified, and activated carbon derived from hazelnut shells as fillers in urea-formaldehyde (UF) resin. The produced plywood's mechanical properties, water absorption, and formaldehyde emissions were thoroughly analyzed. Key findings demonstrate that incorporating 10 part by weight (pbw) native hazelnut shell flour significantly enhances the modulus of rupture (MOR) to 138.6 N mm and modulus of elasticity (MOE) to 13,311 N mm. Chemically modified hazelnut shell flour achieves optimal results at 5 pbw, while activated carbon from hazelnut shells, even at 1 pbw, markedly improves bonding strength (2.79 N mm referred to 0.81 N mm for reference sample without filler added). Notably, activated carbon effectively reduces formaldehyde emissions (2.72 mg 100 g oven dry panel referred to 3.32 mg 100 g oven dry panel for reference samples with 10 pbw filler) and improves water resistance, indicating better further dimensional stability and lower environmental impact. The study also shows that excessive filler content negatively affects strength parameters, confirming the importance of optimizing filler concentration. These results highlight the potential of hazelnut shells as an eco-friendly alternative filler in plywood production, contributing to waste valorization and environmental sustainability. This study supports the practical application of hazelnut shell fillers, promoting a circular economy and reducing reliance on traditional, less sustainable materials, thus providing a valuable solution for the wood composite industry.
本研究探讨了在三层胶合板技术中利用榛子壳(HS)作为创新填料的潜力,以满足对可持续高性能材料日益增长的需求。传统胶合板生产依赖于添加各种填料的粘合剂来改善物理、机械和操作特性。本研究探索使用源自榛子壳的天然、化学改性和活性炭作为脲醛(UF)树脂中的填料。对所生产胶合板的机械性能、吸水性和甲醛释放量进行了全面分析。主要研究结果表明,加入10重量份(pbw)的天然榛子壳粉可显著提高断裂模量(MOR)至138.6 N/mm²和弹性模量(MOE)至13311 N/mm²。化学改性榛子壳粉在5 pbw时取得最佳效果,而榛子壳活性炭即使在1 pbw时也能显著提高粘结强度(2.79 N/mm²,而未添加填料的参考样品为0.81 N/mm²)。值得注意的是,活性炭有效降低了甲醛释放量(2.72 mg/100 g烘干板,而添加10 pbw填料的参考样品为3.32 mg/100 g烘干板)并提高了耐水性,表明具有更好的尺寸稳定性和更低的环境影响。研究还表明,填料含量过高会对强度参数产生负面影响, 证实了优化填料浓度的重要性。这些结果突出了榛子壳作为胶合板生产中一种环保替代填料的潜力,有助于废物增值和环境可持续性。本研究支持榛子壳填料的实际应用,促进循环经济并减少对传统的、可持续性较差材料的依赖,从而为木材复合材料行业提供了一个有价值的解决方案。