Zimmermann Lea, Aili Ablimit, Stegmaier Thomas, Kaya Cigdem, Gresser Götz T
German Institutes of Textile and Fiber Research (DITF), Koerschtalstrasse 26, 73770 Denkendorf, Germany.
College of Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Polymers (Basel). 2024 Aug 9;16(16):2264. doi: 10.3390/polym16162264.
This paper investigates the theoretical and experimental cooling performance of textile materials utilizing radiative cooling technology. By applying Kirchhoff's law, the emissivity of surfaces is determined, revealing that materials with high transmission values can achieve comparable cooling performance to those with high reflection values. Notably, materials exhibiting moderate reflectance and transmittance in the solar range tend to absorb minimal solar radiation, thus offering high theoretical cooling performance. However, practical applications like building envelopes or clothing present challenges due to the impact of background radiation on overall cooling capacity. Despite their intrinsic cooling properties, a significant portion of solar radiation is transmitted, complicating matters as the background can significantly affect overall cooling performance. This study provides a solution that accounts for the influence of background materials. Based on spectral data, various background materials and their impact on different semi-transparent comparison materials can be considered, and cooling performance can be simulated. This enables the simulation of cooling performance for various application scenarios and facilitates comparisons between transparent, semi-transparent, and opaque textile materials.
本文研究了利用辐射冷却技术的纺织材料的理论和实验冷却性能。通过应用基尔霍夫定律,确定了表面的发射率,结果表明,具有高透射率值的材料能够实现与具有高反射率值的材料相当的冷却性能。值得注意的是,在太阳光谱范围内表现出适度反射率和透射率的材料往往吸收最少的太阳辐射,因此具有较高的理论冷却性能。然而,由于背景辐射对整体冷却能力的影响,建筑围护结构或服装等实际应用面临挑战。尽管它们具有内在的冷却特性,但仍有相当一部分太阳辐射会透射,由于背景会显著影响整体冷却性能,这使得情况变得复杂。本研究提供了一种考虑背景材料影响的解决方案。基于光谱数据,可以考虑各种背景材料及其对不同半透明比较材料的影响,并模拟冷却性能。这使得能够模拟各种应用场景下的冷却性能,并便于对透明、半透明和不透明纺织材料进行比较。