Suppr超能文献

盐胁迫下燕麦()幼苗的比较生理和转录组分析揭示耐盐机制。

Comparative Physiological and Transcriptomic Analyses of Oat () Seedlings under Salt Stress Reveal Salt Tolerance Mechanisms.

作者信息

Zhou Xiangrui, Wang Miaomiao, Yang Li, Wang Wenping, Zhang Yuehua, Liu Linbo, Chai Jikuan, Liu Huan, Zhao Guiqin

机构信息

Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.

Key Laboratory of Forage Gerplasm Innovation and Variety Breeding of the Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Ecosystem of the Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.

出版信息

Plants (Basel). 2024 Aug 12;13(16):2238. doi: 10.3390/plants13162238.

Abstract

Soil salinity is a major abiotic stress limiting crop production globally. Oat () is an annual cereal with a strong salt tolerance, a high yield, and nutritional quality, although the mechanisms underlying its salt stress response remain largely unknown. We examined the physiological and transcriptomic responses of seedlings to salt stress in tolerant cultivar Qingyongjiu 195 and sensitive cultivar 709. Under salt stress, Qingyongjiu 195 maintained a higher photosynthetic efficiency, antioxidant enzymes activity, and leaf K accumulation but a lower Na uptake than 709. RNA-seq revealed 6616 differentially expressed genes (DEGs), including 4265 up- and 2351 downregulated. These were enriched in pathways like plant-pathogen interaction, phenylpropanoid biosynthesis, and MAPK signaling. We specifically highlight DEGs involved in photosynthesis (, , , ) and antioxidants (, ). Qingyongjiu 195 also appeared to enhance K uptake via and and sequester Na in vacuoles via . Additionally, restricted Na while promoting K transport to shoots, maintaining K/Na. The expression levels of , , , , and in Qingyongjiu 195 were higher than those in 709. Oats regulated Ca concentration through CAX and ACA after salt stress, decoded Ca signals through CML, and then transferred Ca signals to downstream receptors through the Ca sensors CaM and CDPK, thereby activating K/Na transporters, such as SOS1 and NHX, etc. Our results shed light on plant salt stress response mechanisms and provide transcriptomic resources for molecular breeding in improving salt tolerance in oats.

摘要

土壤盐渍化是限制全球作物产量的主要非生物胁迫因素。燕麦()是一种一年生谷物,具有较强的耐盐性、高产和营养品质,但其盐胁迫响应的潜在机制在很大程度上仍不清楚。我们研究了耐盐品种青永久195和敏感品种709的幼苗对盐胁迫的生理和转录组学响应。在盐胁迫下,青永久195保持了较高的光合效率、抗氧化酶活性和叶片钾积累,但钠吸收低于709。RNA测序揭示了6616个差异表达基因(DEGs),包括4265个上调和2351个下调基因。这些基因在植物-病原体相互作用、苯丙烷生物合成和MAPK信号传导等途径中富集。我们特别强调了参与光合作用(、、、)和抗氧化剂(、)的DEGs。青永久195似乎还通过和增强钾吸收,并通过将钠隔离在液泡中。此外,限制钠的同时促进钾向地上部运输,维持钾/钠比。青永久195中、、、和的表达水平高于709。盐胁迫后,燕麦通过CAX和ACA调节钙浓度,通过CML解码钙信号,然后通过钙传感器CaM和CDPK将钙信号传递给下游受体,从而激活钾/钠转运蛋白,如SOS1和NHX等。我们的结果揭示了植物盐胁迫响应机制,并为燕麦耐盐性分子育种提供了转录组资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d424/11359270/9e3e99aead30/plants-13-02238-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验