Suppr超能文献

一种基于CPHNet的南瓜幼苗点云茎精确分割算法。

A Precise Segmentation Algorithm of Pumpkin Seedling Point Cloud Stem Based on CPHNet.

作者信息

Deng Qiaomei, Zhao Junhong, Li Rui, Liu Genhua, Hu Yaowen, Ye Ziqing, Zhou Guoxiong

机构信息

College of Computer & Mathematics, Central South University of Forestry and Technology, Changsha 410004, China.

Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

出版信息

Plants (Basel). 2024 Aug 18;13(16):2300. doi: 10.3390/plants13162300.

Abstract

Accurate segmentation of the stem of pumpkin seedlings has a great influence on the modernization of pumpkin cultivation, and can provide detailed data support for the growth of pumpkin plants. We collected and constructed a pumpkin seedling point cloud dataset for the first time. Potting soil and wall background in point cloud data often interfere with the accuracy of partial cutting of pumpkin seedling stems. The stem shape of pumpkin seedlings varies due to other environmental factors during the growing stage. The stem of the pumpkin seedling is closely connected with the potting soil and leaves, and the boundary of the stem is easily blurred. These problems bring challenges to the accurate segmentation of pumpkin seedling point cloud stems. In this paper, an accurate segmentation algorithm for pumpkin seedling point cloud stems based on CPHNet is proposed. First, a channel residual attention multilayer perceptron (CRA-MLP) module is proposed, which suppresses background interference such as soil. Second, a position-enhanced self-attention (PESA) mechanism is proposed, enabling the model to adapt to diverse morphologies of pumpkin seedling point cloud data stems. Finally, a hybrid loss function of cross entropy loss and dice loss (HCE-Dice Loss) is proposed to address the issue of fuzzy stem boundaries. The experimental results show that CPHNet achieves a 90.4% average cross-to-merge ratio (mIoU), 93.1% average accuracy (mP), 95.6% average recall rate (mR), 94.4% F1 score (mF1) and 0.03 plants/second (speed) on the self-built dataset. Compared with other popular segmentation models, this model is more accurate and stable for cutting the stem part of the pumpkin seedling point cloud.

摘要

南瓜幼苗茎部的精确分割对南瓜种植现代化具有重大影响,可为南瓜植株生长提供详细数据支持。我们首次收集并构建了南瓜幼苗点云数据集。点云数据中的盆栽土壤和墙壁背景常干扰南瓜幼苗茎部局部切割的准确性。南瓜幼苗的茎部形状在生长阶段会因其他环境因素而有所不同。南瓜幼苗的茎与盆栽土壤和叶片紧密相连,茎的边界容易模糊。这些问题给南瓜幼苗点云茎部的精确分割带来了挑战。本文提出了一种基于CPHNet的南瓜幼苗点云茎部精确分割算法。首先,提出了一种通道残差注意力多层感知器(CRA-MLP)模块,可抑制土壤等背景干扰。其次,提出了一种位置增强自注意力(PESA)机制,使模型能够适应南瓜幼苗点云数据茎部的多样形态。最后,提出了一种交叉熵损失和骰子损失的混合损失函数(HCE-Dice Loss)来解决茎部边界模糊的问题。实验结果表明,CPHNet在自建数据集上实现了90.4%的平均交叉到合并比率(mIoU)、93.1%的平均准确率(mP)、95.6%的平均召回率(mR)、94.4%的F1分数(mF1)以及0.03株/秒的速度。与其他流行的分割模型相比,该模型在切割南瓜幼苗点云的茎部时更加准确和稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce7d/11359360/d417fdbee42c/plants-13-02300-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验