Elshair Ismail M, Khanzada Tariq Jamil Saifullah, Shahid Muhammad Farrukh, Siddiqui Shahbaz
Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Computer Systems Engineering Department, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
Sensors (Basel). 2024 Aug 9;24(16):5149. doi: 10.3390/s24165149.
Federated learning (FL) is a decentralized machine learning approach whereby each device is allowed to train local models, eliminating the requirement for centralized data collecting and ensuring data privacy. Unlike typical typical centralized machine learning, collaborative model training in FL involves aggregating updates from various devices without sending raw data. This ensures data privacy and security while collecting a collective learning from distributed data sources. These devices in FL models exhibit high efficacy in terms of privacy protection, scalability, and robustness, which is contingent upon the success of communication and collaboration. This paper explore the various topologies of both decentralized or centralized in the context of FL. In this respect, we investigated and explored in detail the evaluation of four widly used end-to-end FL frameworks: FedML, Flower, Flute, and PySyft. We specifically focused on vertical and horizontal FL systems using a logistic regression model that aggregated by the FedAvg algorithm. specifically, we conducted experiments on two images datasets, MNIST and Fashion-MNIST, to evaluate their efficiency and performance. Our paper provides initial findings on how to effectively combine horizontal and vertical solutions to address common difficulties, such as managing model synchronization and communication overhead. Our research indicates the trade-offs that exist in the performance of several simulation frameworks for federated learning.
联邦学习(FL)是一种去中心化的机器学习方法,通过这种方法,每个设备都可以训练本地模型,从而消除了集中式数据收集的需求,并确保了数据隐私。与典型的集中式机器学习不同,联邦学习中的协作模型训练涉及在不发送原始数据的情况下聚合来自各种设备的更新。这在从分布式数据源收集集体学习的同时,确保了数据隐私和安全。联邦学习模型中的这些设备在隐私保护、可扩展性和鲁棒性方面表现出很高的效率,这取决于通信和协作的成功。本文探讨了联邦学习背景下分散式或集中式的各种拓扑结构。在这方面,我们详细研究和探讨了对四个广泛使用的端到端联邦学习框架的评估:FedML、Flower、Flute和PySyft。我们特别关注使用FedAvg算法聚合的逻辑回归模型的垂直和水平联邦学习系统。具体来说,我们在两个图像数据集MNIST和Fashion-MNIST上进行了实验,以评估它们的效率和性能。我们的论文提供了关于如何有效结合水平和垂直解决方案以解决常见困难(如管理模型同步和通信开销)的初步发现。我们的研究表明了几种联邦学习模拟框架在性能方面存在的权衡。