Suppr超能文献

RSE-YOLOv8:一种水下生物目标检测算法。

RSE-YOLOv8: An Algorithm for Underwater Biological Target Detection.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China.

出版信息

Sensors (Basel). 2024 Sep 18;24(18):6030. doi: 10.3390/s24186030.

Abstract

Underwater target detection is of great significance in underwater ecological assessment and resource development. To better protect the environment and optimize the development of underwater resources, we propose a new underwater target detection model with several innovations based on the YOLOv8 framework. Firstly, the SAConv convolutional operation is introduced to redesign C2f, the core module of YOLOv8, to enhance the network's feature extraction capability for targets of different scales. Secondly, we propose the RFESEConv convolution module instead of the conventional convolution operation in neural networks to cope with the degradation of image channel information in underwater images caused by light refraction and reflection. Finally, we propose an ESPPF module to further enhance the model's multi-scale feature extraction efficiency. Simultaneously, the overall parameters of the model are reduced. Compared to the baseline model, the proposed one demonstrates superior advantages when deployed on underwater devices with limited computational resources. The experimental results show that we have achieved significant detection accuracy on the underwater dataset, with an mAP@50 of 78% and an mAP@50:95 of 43.4%. Both indicators are 2.1% higher compared to the baseline models. Additionally, the proposed model demonstrates superior performance on other datasets, showcasing its strong generalization capability and robustness. This research provides new ideas and methods for underwater target detection and holds important application value.

摘要

水下目标检测在水下生态评估和资源开发中具有重要意义。为了更好地保护环境和优化水下资源的开发,我们提出了一种新的水下目标检测模型,该模型基于 YOLOv8 框架,具有多项创新。首先,引入了 SAConv 卷积操作来重新设计 YOLOv8 的核心模块 C2f,以增强网络对不同尺度目标的特征提取能力。其次,我们提出了 RFESEConv 卷积模块来替代神经网络中的常规卷积操作,以应对水下图像中由于光折射和反射导致的图像通道信息退化问题。最后,我们提出了 ESPPF 模块来进一步提高模型的多尺度特征提取效率。同时,降低了模型的整体参数。与基线模型相比,该模型在计算资源有限的水下设备上部署时具有更优越的优势。实验结果表明,我们在水下数据集上实现了显著的检测精度,mAP@50 达到了 78%,mAP@50:95 达到了 43.4%。与基线模型相比,这两个指标分别提高了 2.1%。此外,该模型在其他数据集上也表现出了优越的性能,展示了其强大的泛化能力和鲁棒性。这项研究为水下目标检测提供了新的思路和方法,具有重要的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f05/11435856/e7e1686f028f/sensors-24-06030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验