Suppr超能文献

旋转机械故障诊断中手工特征提取的评估:一项综述。

Evaluation of Hand-Crafted Feature Extraction for Fault Diagnosis in Rotating Machinery: A Survey.

作者信息

Sánchez René-Vinicio, Macancela Jean Carlo, Ortega Luis-Renato, Cabrera Diego, García Márquez Fausto Pedro, Cerrada Mariela

机构信息

GIDTEC, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador.

School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523000, China.

出版信息

Sensors (Basel). 2024 Aug 21;24(16):5400. doi: 10.3390/s24165400.

Abstract

This article presents a comprehensive collection of formulas and calculations for hand-crafted feature extraction of condition monitoring signals. The documented features include 123 for the time domain and 46 for the frequency domain. Furthermore, a machine learning-based methodology is presented to evaluate the performance of features in fault classification tasks using seven data sets of different rotating machines. The evaluation methodology involves using seven ranking methods to select the best ten hand-crafted features per method for each database, to be subsequently evaluated by three types of classifiers. This process is applied exhaustively by evaluation groups, combining our databases with an external benchmark. A summary table of the performance results of the classifiers is also presented, including the percentage of classification and the number of features required to achieve that value. Through graphic resources, it has been possible to show the prevalence of certain features over others, how they are associated with the database, and the order of importance assigned by the ranking methods. In the same way, finding which features have the highest appearance percentages for each database in all experiments has been possible. The results suggest that hand-crafted feature extraction is an effective technique with low computational cost and high interpretability for fault identification and diagnosis.

摘要

本文介绍了用于状态监测信号手工特征提取的公式和计算方法的全面集合。记录的特征包括时域的123个和频域的46个。此外,还提出了一种基于机器学习的方法,使用七个不同旋转机械的数据集来评估特征在故障分类任务中的性能。评估方法包括使用七种排序方法为每个数据库的每种方法选择最佳的十个手工特征,随后由三种类型的分类器进行评估。通过评估组详尽地应用此过程,将我们的数据库与外部基准相结合。还给出了分类器性能结果的汇总表,包括分类百分比和达到该值所需的特征数量。通过图形资源,可以展示某些特征相对于其他特征的普遍性、它们与数据库的关联方式以及排序方法赋予的重要性顺序。同样,也有可能找出在所有实验中每个数据库中出现百分比最高的特征。结果表明,手工特征提取是一种有效的技术,对于故障识别和诊断具有低计算成本和高可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f21a/11360600/1620a4ca2061/sensors-24-05400-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验