文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过抑制胆汁酸合成和促进胆汁酸排泄来改善胆汁淤积性肝损伤。

ameliorates cholestatic liver injury through inhibiting bile acid synthesis and promoting bile acid excretion.

机构信息

Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.

Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Tibet, China.

出版信息

Gut Microbes. 2024 Jan-Dec;16(1):2390176. doi: 10.1080/19490976.2024.2390176. Epub 2024 Aug 29.


DOI:10.1080/19490976.2024.2390176
PMID:39205654
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11364073/
Abstract

Gut microbiota dysbiosis is involved in cholestatic liver diseases. However, the mechanisms remain to be elucidated. The purpose of this study was to examine the effects and mechanisms of ( ) on cholestatic liver injury in both animals and humans. Bile duct ligation (BDL) was performed to mimic cholestatic liver injury in mice and serum liver function was tested. Gut microbiota were analyzed by 16S rRNA sequencing. Fecal bacteria transplantation (FMT) was used to evaluate the role of gut microbiota in cholestasis. Bile acids (BAs) profiles were analyzed by targeted metabolomics. Effects of in cholestatic patients were evaluated by a randomized controlled clinical trial (NO: ChiCTR2200063330). BDL induced different severity of liver injury, which was associated with gut microbiota. 16S rRNA sequencing of feces confirmed the gut flora differences between groups, of which was the most distinguished genus. Administration of after BDL significantly attenuated hepatic injury in mice, decreased liver total BAs and increased fecal total BAs. Furthermore, after treatment, inhibition of hepatic Cholesterol 7α-hydroxylase (CYP7α1), restored ileum Fibroblast growth factor 15 (FGF15) and Small heterodimer partner (SHP) accounted for BAs synthesis decrease, whereas enhanced BAs excretion was attributed to the increase of unconjugated BAs by enriched bile salt hydrolase (BSH) enzymes in feces. Similarly, in cholestasis patients, supplementation of promoted the recovery of liver function and negatively correlated with liver function indicators, possibly in relationship with the changes in BAs profiles and gut microbiota composition. treatment ameliorates cholestatic liver injury through inhibited hepatic BAs synthesis and enhances fecal BAs excretion.

摘要

肠道微生物失调与胆汁淤积性肝病有关。然而,其机制仍需阐明。本研究旨在探讨 ()对动物和人类胆汁淤积性肝损伤的影响及其机制。通过胆管结扎(BDL)模拟小鼠胆汁淤积性肝损伤,并检测血清肝功能。通过 16S rRNA 测序分析肠道微生物群。粪便细菌移植(FMT)用于评估肠道微生物群在胆汁淤积中的作用。通过靶向代谢组学分析胆汁酸(BAs)谱。通过一项随机对照临床试验(NO:ChiCTR2200063330)评估 ()在胆汁淤积患者中的作用。BDL 诱导不同严重程度的肝损伤,与肠道微生物群有关。粪便 16S rRNA 测序证实了各组之间的菌群差异,其中 ()是最显著的属。BDL 后给予 ()可显著减轻小鼠肝损伤,降低肝总 BAs 并增加粪便总 BAs。此外,()治疗后,抑制肝胆固醇 7α-羟化酶(CYP7α1),恢复回肠成纤维细胞生长因子 15(FGF15)和小异二聚体伴侣(SHP),导致 BAs 合成减少,而通过粪便中丰富的胆盐水解酶(BSH)增加未结合的 BAs 导致 BAs 排泄增加。同样,在胆汁淤积患者中,()的补充促进了肝功能的恢复,与肝功能指标呈负相关,可能与 BAs 谱和肠道微生物群组成的变化有关。()通过抑制肝 BAs 合成和增加粪便 BAs 排泄来改善胆汁淤积性肝损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/dbcd038810b5/KGMI_A_2390176_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/2afeb986b234/KGMI_A_2390176_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/d06e17ff12f3/KGMI_A_2390176_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/9fce936bbf0c/KGMI_A_2390176_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/ee5426aabc42/KGMI_A_2390176_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/9ab2247cf096/KGMI_A_2390176_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/b84f21e8d778/KGMI_A_2390176_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/702e220fe011/KGMI_A_2390176_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/dbcd038810b5/KGMI_A_2390176_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/2afeb986b234/KGMI_A_2390176_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/d06e17ff12f3/KGMI_A_2390176_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/9fce936bbf0c/KGMI_A_2390176_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/ee5426aabc42/KGMI_A_2390176_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/9ab2247cf096/KGMI_A_2390176_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/b84f21e8d778/KGMI_A_2390176_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/702e220fe011/KGMI_A_2390176_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e7/11364073/dbcd038810b5/KGMI_A_2390176_F0008_OC.jpg

相似文献

[1]
ameliorates cholestatic liver injury through inhibiting bile acid synthesis and promoting bile acid excretion.

Gut Microbes. 2024

[2]
Caffeoylquinic acids from Silphium perfoliatum L. show hepatoprotective effects on cholestatic mice by regulating enterohepatic circulation of bile acids.

J Ethnopharmacol. 2025-1-30

[3]
Role of NLRP3 in the metabolism of bile acids and gut microbiota in CCl4-induced liver fibrosis.

Microbiol Spectr. 2025-7-21

[4]
Fecal Microbiota Transplantation from Noni Fruit Phenolic-Rich Extract Intervention Mouse Donors Ameliorates Lipid Metabolism Disorder by Regulating the FXR-FGF15 Pathway in a Gut Microbiota-Dependent Manner.

J Agric Food Chem. 2025-7-16

[5]
Alpha-tocopheryl quinone attenuates liver fibrosis through enriching Christensenella minuta and modulating bile acids metabolism via gut-liver axis.

Phytomedicine. 2025-8-5

[6]
Capsaicin ameliorates cholestasis through modulation of the FXR-SHP and FXR-FGF15 gut-liver axis in mice.

Phytomedicine. 2025-10

[7]
Gut microbiota links to histological damage in chronic HBV infection patients and aggravates fibrosis via fecal microbiota transplantation in mice.

Microbiol Spectr. 2025-8-5

[8]
Effects of a veterinary gastrointestinal diet on fecal characteristics, metabolites, and microbiota concentrations of adult cats treated with metronidazole.

J Anim Sci. 2024-1-3

[9]
Oral exposure to benzalkonium chlorides in male and female mice reveals alteration of the gut microbiome and bile acid profile.

Toxicol Sci. 2024-12-1

[10]
Dimethyl fumarate attenuates bile acid retention and liver fibrosis in a mouse model of cholestasis.

Am J Physiol Gastrointest Liver Physiol. 2025-5-1

引用本文的文献

[1]
Integrated oral-gut microbiota therapy: a novel perspective on preventing bacterial translocation for systemic disease management.

Front Cell Infect Microbiol. 2025-7-28

[2]
Integration bile acid metabolomics and gut microbiome to study the anti-liver fibrosis effects of total alkaloids of Corydalis saxicola Bunting.

Chin Med. 2025-7-4

[3]
Gut microbiota in regulatory T cell generation and function: mechanisms and health implications.

Gut Microbes. 2025-12

[4]
Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy.

MedComm (2020). 2025-4-18

[5]
Exploring the Immunological Role of the Microbial Composition of the Appendix and the Associated Risks of Appendectomies.

J Pers Med. 2025-3-14

本文引用的文献

[1]
Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy.

Nat Commun. 2023-3-9

[2]
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology.

Nat Rev Gastroenterol Hepatol. 2022-7

[3]
Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease.

Hepatology. 2022-4

[4]
Gut microbiota depletion exacerbates cholestatic liver injury via loss of FXR signalling.

Nat Metab. 2021-9

[5]
The microbiota in cirrhosis and its role in hepatic decompensation.

J Hepatol. 2021-7

[6]
Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy.

Science. 2020-8-13

[7]
Quantification of Intestinal Species in Children with Functional Constipation by Quantitative Real-Time PCR.

Clin Exp Gastroenterol. 2020-5-5

[8]
Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury.

Cell Metab. 2020-5-5

[9]
Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability in Mice.

Hepatology. 2020-12

[10]
Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice.

Hepatology. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索